Wicaksono, Emanuel Purwadi
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Prototipe Sistem Monitoring Gangguan Motor Tiga Fasa Berbasis IoT Wicaksono, Emanuel Purwadi; Haryudo, Subuh Isnur
Telekontran : Jurnal Ilmiah Telekomunikasi, Kendali dan Elektronika Terapan Vol. 11 No. 2 (2023): TELEKONTRAN vol 11 no 2 Oktober 2023
Publisher : Program Studi Teknik Elektro, Fakultas Teknik dan Ilmu Komputer, Universitas Komputer Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34010/telekontran.v11i2.11154

Abstract

-. In the industrial world, three-phase motors are widely used because they have simple construction, easy maintenance, constant rotation, cheap, high reliability and have a high power factor. However, when operating a three-phase motor, disturbances often occur such as voltage imbalance, current imbalance, excessive load, and even overheat. This research was carried out to produce a three-phase motor disturbance monitoring system that can be accessed via the web which is easy to access and has good accuracy values. The research method uses the ADDIE method with a quantitative approach. The average results of motor measurements using the PZEM004T sensor obtained a no-load voltage value of 220V – 223V with an error of 1.04% - 1.95%, a single phase voltage value of 217V – 224.4V with an error of 1.14% - 2, 5%, average current value of 2A – 4.2A with error of 0% - 16.6%, active power value of 144.6W – 790.4W. The results of motor temperature measurements using the LM35 sensor were 38 ºC - 50 ºC with an error value of 1.06% - 2.5%. The RPM measurement results using an optocoupler sensor were 1027 – 2375 with an error value of 0.26% - 58.71%. From the measurement results it is known that the no-load voltage and single phase voltage have good values, there is an imbalance in the current and power used, the motor temperature increases relatively significantly, and it has an unstable RPM.