Claim Missing Document
Check
Articles

Found 2 Documents
Search

Investigasi Efisiensi Penghambatan Korosi Senyawa Quinoxaline Berbasis Machine Learning Adiprasetya, Vicenzo Frendyatha; Akrom, Muhamad; Trisnapradika, Gustina Alfa
Eksergi Vol 21, No 2 (2024)
Publisher : Prodi Teknik Kimia, Fakultas Teknologi Industri, UPN "Veteran" Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31315/e.v21i2.10025

Abstract

Korosi memberikan kekhawatiran serius bagi sektor industri dan akademik karena mempunyai dampak negatif yang signifikan terhadap sejumlah bidang, termasuk perekonomian, lingkungan, masyarakat, industri, keamanan, dan keselamatan. Saat ini, banyak peminat topik pengendalian kerusakan bahan berbasis molekul organik. Quinoxaline mempunyai potensi sebagai inhibitor korosi karena tidak beracun, mudah diproduksi, dan efektif dalam berbagai kondisi korosif. Mengeksplorasi kemungkinan kandidat penghambat korosi melalui penelitian eksperimental adalah proses yang memakan waktu dan sumber daya yang intensif. Dengan menggunakan pendekatan machine learning (ML) berdasarkan model quantitative structure-property relationship (QSPR), kami mengevaluasi beragam algoritma linier dan non-linier sebagai model prediktif nilai corrosion inhibition efficiency (CIE) dalam penelitian ini. Kami menemukan bahwa, untuk kumpulan data senyawa quinoxaline, model non-linier Gradient Boosting Regressor (GBR) mengungguli keseluruhan model linier dan non-linier, serta hasil dari literatur dalam hal kinerja prediksi berdasarkan metrik root mean squared error (RMSE), mean squared error (MSE), mean absolute deviation (MAD), mean absolute percentage error (MAPE) dan coefficient of determination (R2). Secara keseluruhan, penelitian kami memberikan sudut pandang baru tentang kapasitas model ML untuk memperkirakan kemampuan penghambatan korosi pada permukaan besi oleh senyawa organik quinoxaline.
Investigasi Efisiensi Penghambatan Korosi Senyawa Quinoxaline Berbasis Machine Learning Adiprasetya, Vicenzo Frendyatha; Akrom, Muhamad; Trisnapradika, Gustina Alfa
Eksergi Vol 21 No 2 (2024)
Publisher : Prodi Teknik Kimia, Fakultas Teknik Industri, UPN "Veteran" Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31315/e.v21i2.10025

Abstract

Korosi memberikan kekhawatiran serius bagi sektor industri dan akademik karena mempunyai dampak negatif yang signifikan terhadap sejumlah bidang, termasuk perekonomian, lingkungan, masyarakat, industri, keamanan, dan keselamatan. Saat ini, banyak peminat topik pengendalian kerusakan bahan berbasis molekul organik. Quinoxaline mempunyai potensi sebagai inhibitor korosi karena tidak beracun, mudah diproduksi, dan efektif dalam berbagai kondisi korosif. Mengeksplorasi kemungkinan kandidat penghambat korosi melalui penelitian eksperimental adalah proses yang memakan waktu dan sumber daya yang intensif. Dengan menggunakan pendekatan machine learning (ML) berdasarkan model quantitative structure-property relationship (QSPR), kami mengevaluasi beragam algoritma linier dan non-linier sebagai model prediktif nilai corrosion inhibition efficiency (CIE) dalam penelitian ini. Kami menemukan bahwa, untuk kumpulan data senyawa quinoxaline, model non-linier Gradient Boosting Regressor (GBR) mengungguli keseluruhan model linier dan non-linier, serta hasil dari literatur dalam hal kinerja prediksi berdasarkan metrik root mean squared error (RMSE), mean squared error (MSE), mean absolute deviation (MAD), mean absolute percentage error (MAPE) dan coefficient of determination (R2). Secara keseluruhan, penelitian kami memberikan sudut pandang baru tentang kapasitas model ML untuk memperkirakan kemampuan penghambatan korosi pada permukaan besi oleh senyawa organik quinoxaline.