Claim Missing Document
Check
Articles

Found 2 Documents
Search

Comparative Analysis of Naïve Bayes and K-Nearest Neighbors Algorithms in Predicting Public Interest in Electric Motorcycles Syahputra, Arief; Zuhri Harahap, Syaiful; Nasution , Marnis
International Journal of Science, Technology & Management Vol. 5 No. 4 (2024): July 2024
Publisher : Publisher Cv. Inara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46729/ijstm.v5i4.1134

Abstract

Concerns about global warming and the need for sustainable transport solutions have led to the emergence of electric vehicles as an alternative to conventional vehicles. These vehicles offer cleaner and more efficient transportation, especially in urban areas. However, high costs in some countries, such as Indonesia, hinder their adoption. Electric motorcycle companies use previously recorded data to predict customer interest in purchasing their products. Based on these forecasts, business owners make decisions about the quantity of goods to supply. Researchers are increasingly using machine learning algorithms to study consumer behavior and predict demand for a variety of products, including electric motorcycles. The researchers have used this data-based method to analyze large amounts of consumer data, including online survey responses and reviews, as well as other sources. The study aims to perform a comparative analysis of the performance of the Naïve Bayes and K-Nearest Neighbors algorithms to predict public interest in electric motorcycles in Labuhanbatu district. We will perform a comparative analysis based on the performance evaluation matrix (accuracy, precision, recall, and f1 score) to determine the most suitable algorithm. The phases of the research methods included: data collection, exploratory data analysis, data preprocessing, splitting data, implementation of naïve bayes and k-nearest neighbors, and evaluation. The results showed that Naïve Bayes achieved an accuracy of 31.13%, precision of 83.33%, recall of 4.63%, and f1-score of 8.77%. In contrast, K-Nearest Neighbors attains an accuracy of 71.52% and a precision of 71.52%, recall 100%, and f1 score of 83,40%. According to the research results, K-nearest neighbors showed much better results in terms of accuracy, recall, and F1 scores. These results demonstrate that K-nearest neighbor is more effective in detecting public interest in electric motorcycles, and it strikes a better balance between identifying all positive cases and avoiding predictive errors.
PELATIHAN PEMBELAJARAN KALKULUS DENGAN MEDIA MACROMEDIA FLASH Irmayanti; Zuhri Harahap, Syaiful; Masrizal; Putri Erwina; Juli Hati Fitri
Jurnal Pengabdian Masyarakat Gemilang (JPMG) Vol. 1 No. 1: Januari 2021
Publisher : HIMPUNAN DOSEN GEMILANG INDONESIA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (198.795 KB) | DOI: 10.58369/jpmg.v1i1.12

Abstract

Kalkulus merupakan salah satu bagian dari materi matematika yang penting serta banyak diterapkan pada ilmu pengetahuan yang lain, misalnya pada sains dan teknologi, pertanian, kedokteran, serta perekonomian, dan sebagainya. Pada pembelajaran kalkulus salah satu yang menjadi masalah mendasar yaitu masalah limit fungsi, di samping kalkulus diferensial serta integral. Pembelajaran kalkulus dapat kita kelompokkan menjadi dua cabang besar, yakni kalkulus diferensial dan kalkulus integral. Jika diperhatikan, inti dari pelajaran kalkulus tak lain dan tak bukan adalah limit suatu fungsi. Bahkan, secara ekstrim kalkulus dapat didefinisikan sebagai pengkajian tentang limit. Oleh karena itu, pemahaman tentang konsep dan macam?macam fungsi di berbagai cabang ilmu pengetahuan serta sifat?sifat dan operasi limit suatu fungsi merupakan syarat mutlak untuk memahami kalkulus diferensial dan kalkulus integral lebih lanjut.