Claim Missing Document
Check
Articles

Found 3 Documents
Search

RANCANGAN PENYULUHAN PEMANFAATAN DAUN KELOR (Moringa Oleifera L.) SEBAGAI PUPUK ORGANIK CAIR PADA TANAMAN TOMAT Hasibuan, Jasman; Rizal , Khairul; Irmayani , Deci
Scientica: Jurnal Ilmiah Sains dan Teknologi Vol. 3 No. 2 (2024): Scientica: Jurnal Ilmiah Sains dan Teknologi
Publisher : Komunitas Menulis dan Meneliti (Kolibi)

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Tujuan dalam penelitian ini yaitu untuk mengetahui Rancangan Penyuluhan Pemanfaatan Daun Kelor (Moringa Oleifera L.) Sebagai Pupuk Organik Cair Pada Tanaman Tomat. Jenis kajian dalam penelitian ini adalah dengan metode deskripsi kuantitatif dengan pendekatan survei yaitu metode untuk memeriksa status sekelompok orang, kondisi objek dan sistem berpikir. Sumber data yang dikumpulkan pada penelitian ini terdiri dua macam yaitu sebagai berikut: Data primer merupakan data yang diperoleh dari hasil wawancara dan observasi langsung dan Data sekunder merupakan data yang diperoleh dengan menyimpulkan dokumen-dokumen dan informasi penunjang di kantor desa, kantor BPP, maupun di kelompok tani. Untuk mendapatkan data dan informasi mengenai objek penelitian maka digunakan beberapa teknik sebagai berikut: Observasi, Wawancara, Kuesioner/Daftar Cek/Checklist, Dokumentasi. Berdasarkan uji anova dapat dilihat bahwa nilai sigifikansi lebih kecil dari taraf signifikasi yaitu 0,000 < 0,05 yang menunjukkan adanya perbedaan yang signifikan tinggi tanaman pada setiap perlakuan, Berdasarkan uji anova dapat dilihat bahwa nilai sigifikansi lebih kecil dari taraf signifikasi yaitu 0,000 < 0,05 yang menunjukkan adanya perbedaan yang signifikan jumlah anak daun pada setiap perlakuan, Berdasarkan uji anova dapat dilihat bahwa nilai sigifikansi lebih kecil dari taraf signifikasi yaitu 0,02 < 0,05 yang menunjukkan adanya perbedaan yang signifikan terhadap lebar daun pada setiap perlakuan, Berdasarkan uji anova dapat dilihat bahwa nilai sigifikansi lebih kecil dari taraf signifikasi yaitu 0,000 < 0,05 yang menunjukkan adanya perbedaan yang signifikan jumlah bunga per tandan pada setiap perlakuan, Berdasarkan uji anova dapat dilihat bahwa nilai sigifikansi lebih kecil dari taraf signifikasi yaitu 0,000 < 0,05 yang menunjukkan adanya perbedaan yang signifikan jumlah buah per tanaman pada setiap perlakuan, Berdasarkan uji anova dapat dilihat bahwa nilai sigifikansi lebih besar dari taraf signifikasi yaitu 0,19 > 0,05 yang menunjukkan tidak ada perbedaan yang signifikan berat basah pada setiap perlakuan, Berdasarkan uji anova dapat dilihat bahwa nilai sigifikansi lebih besar dari taraf signifikasi yaitu 0,06 > 0,05 yang menunjukkan tidak ada perbedaan yang signifikan berat kering pada setiap perlakuan, Berdasarkan uji anova dapat dilihat bahwa nilai sigifikansi lebih kecil dari taraf signifikasi yaitu 0,000 < 0,05 yang menunjukkan adanya perbedaan yang signifikan panjang akar pada setiap perlakuan
Analysis Of Student Satisfaction Level In The Faculty Of Science And Technology Using The Convolution Neural Network Method Martua , Rifki Agus; Irmayani , Deci; Yanris, Gomal Juni
International Journal of Science, Technology & Management Vol. 5 No. 5 (2024): September 2024
Publisher : Publisher Cv. Inara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46729/ijstm.v5i5.1178

Abstract

The Faculty of Science and Technology at Labuhanbatu University is one of the leading faculties that focuses on the development of science and technology. This faculty offers various study programs designed to prepare students to face the challenges of the digital era and industrial revolution 4.0. This research, using survey and interview methods, aims to collect accurate and objective data regarding student perceptions and experiences in various aspects, such as the quality of educational services, quality of teaching, and available supporting facilities such as extracurricular activities, seminars and research projects, ease of access. information and academic support from optimal staff and teaching staff.
Implementation of K-Nearest Neighbors Algorithm in Analyzing Public Interest in Shoping at Supermarkets Siti Kholijah, Siti Kholijah; Sihombing, Volvo; Irmayani , Deci
International Journal of Science, Technology & Management Vol. 5 No. 5 (2024): September 2024
Publisher : Publisher Cv. Inara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46729/ijstm.v5i5.1183

Abstract

People's shopping patterns and behaviors continue to develop along with technological advances and lifestyle changes, thus requiring retail business actors, especially supermarkets, to better understand their customers' interests and preferences. In this context, accurate analysis of customer shopping interests is very important to improve customer satisfaction and optimize marketing strategies. One solution that can be implemented to analyze people's shopping interests is the application of the K-Nearest Neighbors algorithm, a simple yet effective nearest neighbor-based classification method for recognizing patterns from existing data. This study aims to apply the K-Nearest Neighbors algorithm to classify people's interest in shopping at supermarkets. This study also evaluates the effectiveness and performance of the algorithm in the context of business decision-making in the retail sector. The research methodology includes collecting data on people's shopping interests, data pre-processing, implementing the K-Nearest Neighbors algorithm, and evaluating model performance using evaluation metrics such as accuracy, precision, recall, and F1-score. The results of this study indicate that the K-Nearest Neighbors algorithm is able to achieve an accuracy of 88%, with precision, recall, and F1-score all reaching 92.86%. These results indicate that the K-Nearest Neighbors model is very effective in classifying people's shopping interests, with a low error rate. The resulting confusion matrix also shows the model's ability to identify customers who are interested in shopping with little prediction error. This study concludes that we can rely on the K-Nearest Neighbors algorithm to analyze people's shopping interests in supermarkets. This model not only shows good performance in classification but also has great potential to be implemented in recommendation systems and customer segmentation in the real world. This study contributes to the development of consumer behavior analysis methods in the retail sector, as well as providing a basis for further research to explore other algorithms or combinations of techniques to improve the accuracy and effectiveness of classification models.