Claim Missing Document
Check
Articles

Found 2 Documents
Search

Information Retrieval (IR) Pencarian Ide Pokok dalam Teks Artikel Olahraga Berbahasa Inggris Menggunakan Metode MMR (Maximum Marginal Relevance) Malik, Kamil; Jasri, Moh; Mashuri, Ahmad Sanusi
COREAI: Jurnal Kecerdasan Buatan, Komputasi dan Teknologi Informasi Vol 1, No 1 (2020): Keberlanjutan Teknologi Informasi: Green IT sebagai Solusi Ramah Lingkungan
Publisher : Universitas Nurul Jadid

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (402.455 KB) | DOI: 10.33650/coreai.v1i1.1641

Abstract

Pengenalan wajah merupakan suatu teknologi dari komputer untuk mengidentifikasi wajah seseorang pada suatu gambar maupun video. Banyak metode yang bisa digunakan untuk pengenalan wajah antara lain metode fisherface, local binary pattern histogram, dan eigenface. Peneliti sebelumnya menerapkan pengenalan wajah menggunakan metode eigenface untuk mengidentifikasi wajah mahasiswa di Universitas Nurul Jadid. Akan tetapi, metode eigenface hanya fokus pada citra dengan objek tidak bergerak, sehingga belum bisa diterapkan pada video. Untuk itu, pada penelitian ini diusulkan suatu metode yang dapat mengidentifikasi wajah pada video yaitu metode haar cascade dan deep learning. Metode haar cascade merupakan suatu metode yang dapat mendeteksiĀ  posisi letak wajah pada suatu video dan metode deep learning untuk mengenali wajah yang sudah terdeteksi pada video. Hasil uji coba yang dilakukan metode haar cascade dapat mendeteksi adanya wajah pada video secara baik. Akan tetapi metode haar cascade juga mendeteksi yang bukan wajah pada data testing. Hasil dari uji coba pada gambar dengan metode haar cascade dan deep learning teridentifikasi secara benar dengan tingkat akurasi 99,6%. Hasil uji coba metode haar cascade dan deep learning pada video mahasiswa berhasil dilakukan jika komposisi warna dan tingkat cahayanya sama dengan data training dan jika tidak sesuai dengan data training maka tidak berhasil mengidentifikasi wajah mahasiswa pada video secara benar.
Klasifikasi Penyakit Pada Daun Cabai Menggunakan Arsitektur VGG16 Mashuri, Ahmad Sanusi; Sunyoto, Andi; Kusnawi, Kusnawi
Journal of Electrical Engineering and Computer (JEECOM) Vol 6, No 2 (2024)
Publisher : Universitas Nurul Jadid

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33650/jeecom.v6i2.9116

Abstract

Penyakit pada tanaman cabai dapat mengancam produktivitas dan kualitas hasil panen jika tidak terdeteksi dan diatasi secara tepat waktu. Untuk meningkatkan deteksi dini penyakit pada tanaman cabai, kami mengembangkan sistem klasifikasi menggunakan arsitektur VGG16, sebuah jaringan saraf konvolusional yang telah terbukti efektif dalam pengolahan gambar kompleks. Penelitian ini memanfaatkan dataset citra daun cabai yang terdiri dari beberapa kelas penyakit yang umum dijumpai, termasuk Healthy, Yellowish, whitefly, leafcurl dan leafspot. Citra-citra ini diolah dan dinormalisasi untuk pelatihan dan pengujian model. Arsitektur VGG16 digunakan sebagai model dasar, yang telah dipre-trained pada dataset ImageNet untuk meningkatkan kinerja klasifikasi. Proses pelatihan model dilakukan dengan memanfaatkan teknik transfer learning, di mana lapisan-lapisan akhir dari VGG16 disesuaikan dengan dataset penyakit daun cabai. Selama pengujian, sistem berhasil mengenali dan mengklasifikasikan penyakit pada daun cabai dengan tingkat akurasi yang tinggi. Hasil evaluasi menunjukkan bahwa arsitektur VGG16 mampu mengenali berbagai penyakit dengan akurasi rata-rata sebesar 0.9962%. sedangkan waktu komputasi yang dibutukan adalah 7 detik.