Claim Missing Document
Check
Articles

Found 2 Documents
Search

Deteksi Potensi Depresi dari Unggahan Media Sosial X Menggunakan IndoBERT Situmorang, Gilbert Fernando; Purba, Ronsen
Building of Informatics, Technology and Science (BITS) Vol 6 No 2 (2024): September 2024
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i2.5496

Abstract

Over the past few decades, mental disorders such as depression have increased and become a serious public health issue. Many affected individuals choose not to seek professional support due to social stigma. Social media platforms like X provide opportunities to study mental health on a large scale because users often share their personal experiences and emotions. However, there are challenges in understanding language patterns and context in posts, necessitating appropriate techniques and models to effectively detect potential depressions. Utilizing Natural Language Processing (NLP) techniques, this study analyzes 37,554 texts from social media posts to detect potential depressions. This study employs the IndoBERT model, an adaptation of BERT trained on Indonesian text data, to identify potential depression from social media texts. Data were collected through scrapping using negatively and positively connotated keywords, which were consulted with psychiatrists. The text pre-processing includes case folding, text cleaning, spell normalization, stopword removal and stemming. The data were then labeled using the IndoBERT emotion classification model, categorizing negative emotions as depression and positive emotions as normal. The model was trained and evaluated using accuracy, precision, recall, and F1-score metrics, with the best results showing an accuracy of 94.91%, precision of 94.91%, recall of 94.91%, and an F1-score of 94.91%. The results indicate that the IndoBERT model is effective in detecting potential depression from social media texts. However, there are limitations due to the reliance on social media posts, which may not fully reflect the users’ emotional conditions.
BERT Model Implementation for Dynamic Sentiment Analysis of Pertamina on Social Media X Purba, Ronsen; Lubis, Rivaldi; Sikana, Nadya; Situmorang, Gilbert Fernando
Engineering Science Letter Vol. 4 No. 02 (2025): Engineering Science Letter
Publisher : The Indonesian Institute of Science and Technology Research

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56741/IISTR.esl.001139

Abstract

This study aims to investigate the dynamics of public sentiment on platform X in response to the Pertamina corruption scandal, exploring how trust and perception shifted before and after the incident. Utilizing BERT-based sentiment classification model trained on real-world social media posts, the model achieved a validation loss of 0.5078 and an F1-score of 82.12%, demonstrating strong predictive performance for large-scale sentiment analysis. Results revealed a significant rise in negative sentiment and a decline in positive sentiment following the public disclosure of the scandal on February 25, 2025, reflecting a deep erosion of public trust in Pertamina. Qualitative thematic analysis further identified a shift from neutral or positive discussions focused on service quality and innovation to emotionally charged critiques emphasizing betrayal, distrust and institutional failure. These findings highlight the value of integrating deep learning classification with qualitative insights to monitor real-time public opinion and institutional reputation. The study underscores the critical need for transparency and effective communication strategies during reputational crises to rebuild public confidence. Limitations include the focus on a single social media platform, suggesting future research should incorporate cross-platform and multilingual analyses. Practically, this research offers actionable insights for corporate crisis management and contributes to understanding social media’s role in shaping public trust and accountability in the digital age.