Haikal, Muhamad Fachri
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Predicting University Graduates Employability Using Support Vector Machine Classification Haikal, Muhamad Fachri; Palupi, Irma
Building of Informatics, Technology and Science (BITS) Vol 6 No 2 (2024): September 2024
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i2.5655

Abstract

The absorption of graduates into the world of work is a key indicator of higher education institution success, especially amid the tight job market competition due to increasing graduate numbers. Understanding employability and the factors that influence it is crucial for higher education institution to enhance education quality and facilitate graduates' transitions to employment. This research aimed to predict the employability of Telkom University students through their initial job income. Methods involved feature manipulation techniques like Principal Component Analysis, Spearman's rank correlation, and the Chi-square test of independence, followed by SMOTE-ENN to address data imbalance. Modeling was conducted using a Support Vector Machine with Randomized Search hyperparameter tuning, analyzed through Permutation Feature Importance to identify factors affecting employability. The result showed the enhanced SVM model with SMOTE-ENN, Spearman’s rank correlation coefficient as feature selection and randomized search hyperparameter tuning achieved the highest precision, recall, f-score, and accuracy of approximately 0.70, 0.73, 0.71, and 0.73, respectively. Competency features such as ethics, english skills, IT skills, and knowledge were identified as the most influential factors.