Claim Missing Document
Check
Articles

Found 3 Documents
Search

PENGARUH KOMPONEN 6A TERHADAP KEPUASAN WISATAWAN DI TAMAN FATAHILLAH KOTA TUA JAKARTA Eric Julianto; Vishnuvardhana Sahishnu Soeprapto; Safrizal Ardana Ardiyansa
Jurnal Manajemen Perhotelan dan Pariwisata Vol. 7 No. 2 (2024)
Publisher : Universitas Pendidikan Ganesha

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23887/jmpp.v7i2.70192

Abstract

Industri pariwisata berperan penting dalam pembangunan ekonomi. Dalam mendukung pengembangan pariwisata, salah satu faktor yang penting adalah kepuasan wisatawan. Keberhasilan suatu destinasi wisata yang menarik wisatawan juga ditentukan secara signifikan oleh enam komponen utama yang dikenal sebagai 6A. Penelitian ini bertujuan untuk menginvestigasi bagaimana pengaruh berbagai komponen dari 6A terhadap kepuasan wisatawan di Taman Fatahillah yang baru direvitalisasi di Kota Tua Jakarta. Penelitian ini menggunakan metodologi kuantitatif dengan orientasi deskriptif dan mengumpulkan data dari 100 responden dengan teknik pengambilan sampel acak sederhana. Analisis data melibatkan uji validitas, uji reliabilitas, heteroskedastisitas, multikolinearitas, regresi linear sederhana, uji T, dan koefisien determinasi. Hasil penelitian menunjukkan bahwa komponen 6A secara signifikan memengaruhi kepuasan wisatawan, dengan kontribusi positif sebesar 90,7% dari kualitas layanan dan 9,3% dari variabel lainnya.
Klasifikasi Serangan Jaringan menggunakan Teknik Imputasi Berbasis Jaringan Syaraf Tiruan Safrizal Ardana Ardiyansa; Eric Julianto; Natasha Clarissa Maharani; Haidar Ahmad Fajri
The Indonesian Journal of Computer Science Vol. 13 No. 5 (2024): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v13i5.4349

Abstract

Rapid technological developments have changed access to information significantly, especially in telecommunications. This growth creates new threats, such as network attacks, so detection becomes critical for network security. Leveraging machine learning algorithms to detect threats is promising, with effectiveness largely dependent on selecting relevant features optimized by the bat algorithm. Data imputation is critical in preparing data sets, and neural network-based imputation techniques demonstrate outstanding performance, achieving accuracy rates of 99.4% on validation data and 99.3% on test data. This method consistently maintains precision, recall, and scores around 98%. Models using this method also approach perfection in classifying normal and neptune labels. This imputation method can also be applied to other model architectures using autoML. Alternative models such as Light GBM, XGBoost, Random Forest, Extra Trees, and Weighted Ensemble L2 also exhibit exceptional accuracy, exceeding 99.8%.
Segmentasi Citra Daun Tomat Berpenyakit dengan Metode K-Means Clustering pada Ruang Warna HSV Haidar Ahmad Fajri; Safrizal Ardana Ardiyansa; Eric Julianto
The Indonesian Journal of Computer Science Vol. 14 No. 2 (2025): The Indonesian Journal of Computer Science
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v14i2.4685

Abstract

Tomatoes have health benefits and high economic value, but are susceptible to diseases that can reduce yields by 50-60%. Early detection of tomato leaf diseases is necessary to reduce losses. Manual identification is time-consuming and costly, so an efficient technique is needed. This research proposes an image processing-based preprocessing technique using contrast stretching, clustering, background removal, and conversion to Hue-Saturation-Value color space. The results show that the proposed technique is able to identify septoria spot, mosaic virus, and bacterial spot, which are 94.99%, 92.83%, and 94.57%, respectively. Bacterial spot also had the highest sensitivity of 88.02%. This indicates that the technique is effective in detecting the disease, hovewer mosaic virus has a lower sensitivity of 82.53%. This value indicates that several cases were not correctly identified. Bacterial spot had the highest value of 87.74% in F_1-score followed by septoria spot at 87.01% and mosaic virus at 85.59%.