This Author published in this journals
All Journal Eksponensial
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Model Geographically Weighted Weibull Regression Pada Indikator Pencemaran Air COD di Daerah Aliran Sungai Mahakam Kalimantan Timur Primadigna, Ullimaz Sam; Suyitno, Suyitno; Siringoringo, Meiliyani
EKSPONENSIAL Vol 13 No 2 (2022)
Publisher : Program Studi Statistika FMIPA Universitas Mulawarman

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (860.595 KB) | DOI: 10.30872/eksponensial.v13i2.1050

Abstract

The Geographically Weighted Weibull Regression (GWWR) model is a Weibull regression model applied to spatial data. Parameter estimation is carried out at each observation location using spatial weighting. This study aimed to determine the GWWR model on the Chemical Oxygen Demand (COD) water pollution indicator data and to obtain the factors that influence COD in the Mahakam watershed. The parameter estimation method was Maximum Likelihood Estimation (MLE). Spatial weighting in parameter estimation has been determined using the adaptive tricube weighting function and the criteria for determining the optimum bandwidth was Generalized Cross-Validation (GCV). The research sample was 20 location points of the Mahakam river determined by the Environmental Department of East Kalimantan Province. The results showed that the factors that influence COD locally was temperature, while the factors that influence globally were temperature, Total Suspended Solids (TSS), and Fecal Coli.