Claim Missing Document
Check
Articles

Found 1 Documents
Search

Studi Kasus Penggunaan YOLO dan OpenCV untuk MENDETEKSI JENIS KENDARAAN di JALAN Santoso Adi Nugroho; Muhammad Kahfi; Mochammad Fidzri Akhbar Alamsyah; Alice Natanael
AI dan SPK : Jurnal Artificial Intelligent dan Sistem Penunjang Keputusan Vol. 2 No. 2 (2024): Jurnal AI dan SPK : Jurnal Artificial Inteligent dan Sistem Penunjang Keputusan
Publisher : CV. Shofanah Media Berkah

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Deteksi kendaraan merupakan salah satu aspek penting dalam sistem pemantauan lalu lintas dan manajemen transportasi modern. Dalam penelitian ini, kami mengembangkan sebuah aplikasi untuk mendeteksi macam kendaraan pada jalan raya dengan OpenCV dan model YOLOv4 (You Only Look Once). Aplikasi ini mampu mengidentifikasi dan mengklasifikasikan berbagai macam kendaraan seperti mobil, truk, bus, dan sepeda motor dari video atau kamera langsung. Proses deteksi melibatkan beberapa tahap, mulai dari pemuatan model YOLOv4 yang telah terlatih, membaca input dari video atau kamera, hingga mengolah dan menampilkan hasil deteksi dengan bounding box dan label klasifikasi. Hasil penelitian menunjukkan bahwa sistem ini dapat mendeteksi dan mengklasifikasikan kendaraan dengan tingkat akurasi yang memadai, memungkinkan implementasi dalam berbagai aplikasi seperti pengawasan lalu lintas, pengumpulan data transportasi, dan pengembangan sistem keamanan. Keunggulan dari penggunaan YOLOv4 adalah kecepatan dan efisiensinya dalam mendeteksi objek secara real-time, sehingga cocok untuk diaplikasikan pada lingkungan dengan kecepatan tinggi seperti jalan raya.