Claim Missing Document
Check
Articles

Found 3 Documents
Search

Modifikasi Sistem Elektrik Feeding Compound Serta Penambahan Alat Pendeteksi Compound Minim Dan Compound Putus Ariawn, Mochamad Youfal; Kuswantori, Ari
Jurnal Instrumentasi dan Teknologi Informasi (JITI) Vol. 5 No. 2 (2024): Mei
Publisher : Prodi D3 Teknik Elektronika Politeknik Gajah Tunggal

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Bald tubeless scrap is a defect in the form of a hole (usually long) in the inner liner area due to a lack of compound bank material on the squeegee and tubeless parts. Production data for December 2022-February 2023 shows the result that there are 156 Pcs or 174 PPM of bald tubeless scrap. This is caused by the compound bank in the empty calender which can cause bald tubeless scrap.The method used in this research is a modification method, with the aim of solving existing problems by modifying the compound feeding system and adding broken compound detectors and minimal compound, they are made.The results of this research are the modification of the electric compound feeding system and the addition of minimal compound detectors and compound breaks. These results have an impact on the reduction of bald tubeless scrap by 117 Pcs of greentire or 174 PPM in April-June 2023.
Fish Detection and Classification using YOLOv8 for Automated Sorting Systems Kuswantori, Ari; Suroso, Dwi Joko
Indonesian Journal of Artificial Intelligence and Data Mining Vol 7, No 2 (2024): September 2024
Publisher : Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/ijaidm.v7i2.30967

Abstract

Automation plays a crucial role in scaling up freshwater fish cultivation to address the future threat of food scarcity and meet growing nutrition needs. The fish industry, in particular, develops automation in the sorting and selection processes. However, research on this technology's development is still very limited. In this work, we propose an approach for detecting and classifying fish running on conveyors. We use YOLOv8, which is the most popular and newest deep learning model for object detection and classification. We conducted our test using the KMITLFish dataset, a moving conveyor belt recording that encompasses common cultivated freshwater fish in Thailand along with some endemic species. As a result, our proposed method was able to accurately detect and classify eight types of fish at a conveyor speed of 505.08 m/h. Moreover, we developed this work using a ready-to-use AI platform, intending to directly contribute to the advancement of automatic fish sorting system technology in the fish industry.
Rancang Bangun Alat Bantu Penggerak Gerobak Supply Ribbon Pada Mesin Extruder di PT. BIN Rahmawan, Dicky; Kuswantori, Ari
Jurnal Instrumentasi dan Teknologi Informasi (JITI) Vol. 6 No. 1 (2024): November
Publisher : Prodi D3 Teknik Elektronika Politeknik Gajah Tunggal

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Kemajuan teknologi memainkan peran krusial dalam sektor manufaktur, di mana fokus utama adalah otomatisasi proses produksi. PT. BIN, yang memproduksi Fan belt/V-belt dan Conveyor belt, menghadapi masalah produktivitas khususnya pada proses extruder di departemen Long Size, akibat waktu yang terbuang saat memindahkan gerobak supply ribbon secara manual. Penelitian ini bertujuan untuk merancang alat bantu yang dapat menggerakkan gerobak supply ribbon secara semi otomatis menggunakan kontrol selector switch dan motor listrik 3 phase. Dengan adanya alat bantu ini, diharapkan pemborosan dapat diminimalkan dan produktivitas operator dalam proses extruder dapat meningkat.