Claim Missing Document
Check
Articles

Found 3 Documents
Search

Usability Evaluation and Improvement of iGracias Mobile Application Design Using Usability Testing Method With user-centred Design Approach Sandan, Ferrari Arya Denaya; Raharja, Pradana Ananda; Gustalika, Muhammad Azrino
Jurnal E-Komtek (Elektro-Komputer-Teknik) Vol 7 No 2 (2023)
Publisher : Politeknik Piksi Ganesha Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37339/e-komtek.v7i2.1014

Abstract

An academic information system is a system designed to process educational data. IGracias Mobile is a theoretical information system application that can be used flexibly by Telkom Purwokerto Institute of Technology students. iGracias aims to provide information about lectures to students. iGracias can be downloaded via google playstore. Based on a questionnaire involving students of the Telkom Purwokerto Institute of Technology, they found several problems with the iGracias application so that it could be maximized to provide lecture information to students. Based on the evaluation of the current design using the System Usability Scale (SUS) questionnaire, the contemporary design has a score of 58, which is classified as grade D with a bad adjective rating, so the design needs to be improved. The method used to develop and develop the user interface design on the iGracias Mobile application is the Usability Testing method with a user-centred Design approach. The results obtained from this study are a new design for the iGracias Mobile application, which was made based on the respondents' suggestions and the steps involved in the UCD method. This research found that the new design's usability value has increased from 58 to 80.8, which is included in grade A with an adjective rating of excellent. Then the new design can overcome the problems in the iGracias Mobile application.
Aplikasi Pembelajaran Sejarah Masjid Saka Tunggal Cikakak Kecamatan Wangon Kabupaten Banyumas Berbasis Mobile Sayakthi, Mira; Gustalika, Muhammad Azrino; Alika, Shintia Dwi
Petik: Jurnal Pendidikan Teknologi Informasi Dan Komunikasi Vol. 8 No. 2 (2022): Volume 8 No 2 Tahun 2022
Publisher : Pendidikan Teknologi Informasi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31980/petik.v8i2.1259

Abstract

Abstrak — Masjid Saka Tunggal merupakan salah satu masjid tertua yang terletak di Desa Cikakak Kecamatan Wangon Kabupaten Banyumas. Berdasarkan penyebaran kuesioner wisatawan yang berkunjung ke Masjid Saka Tunggal 73,3% mengalami kesulitan untuk mencari informasi mengenai Masjid Saka Tunggal. Salah satu Cara untuk mempermudah wisatawan dalam mencari informasi mengenai Masjid Saka Tunggal adalah melalu pembuatan aplikasi pembelajaran Masjid Saka Tunggal berbasis android. Metode yang digunakan dalam pembuatan aplikasi Masjid Saka Tunggal yaitu Multimedia Development Life Cycle (MDLC) sebab metode tersebut memiliki tahapan-tahapan yang cocok digunakan dalam pembuatan aplikasi pembelajaran serta memiliki tahapan yang lebih detail dan jelas. Aplikasi yang telah dibuat kemudian diuji menggunakan metode Black Box Testing untuk mengetahui apakah aplikasi secara fungsional telah berjalan dengan baik. Data yang digunakan dalam penelitian ini diperoleh dari hasil kuesioner dengan menggunakan pengkodean skala likert. Dari 50 data kuesioner didapatkan nilai signifikasi sebesar 5% atau 0,195 dimana nilai yang didapat dari kuesioner tersebut lebih besar dari pada nilai signifikasi. Sedangkan nilai Cronbach's Alpha pada 17 buah pertanyaan memperoleh hasil sebesar 0,787 > 0,60, dinyatakan reliabel. Kata Kunci— Android, Black Box Testing, Cronbach's Alpha, likert, Masjid Saka Tunggal, Multimedia Development Life Cycle (MDLC). Abstract — Saka Tunggal Mosque is one of the oldest mosques located in Cikakak Village, Wangon District, Banyumas Regency. Based on the questionnaire distribution of tourists visiting the Saka Tunggal Mosque, 73.3% had difficulty finding information about the Saka Tunggal Mosque. One way to make it easier for tourists to find information about the Saka Tunggal Mosque is through the creation of an android-based Saka Tunggal Mosque learning application. The method used in making the Saka Tunggal Mosque application is the Multimedia Development Life Cycle (MDLC) because this method has stages that are suitable for use in making learning applications and have more detailed and clear stages. The application that has been made is then tested using the Black Box Testing method to find out whether the application is functionally running well. The data used in this study were obtained from the results of a questionnaire using Likert scale coding. Of the 50 questionnaire data obtained a significance value of 5% or 0.195 where the value obtained from the questionnaire is greater than the significance value. While the Cronbach's Alpha value on 17 questions obtained a result of 0.787 > 0.60, declared reliable. Keywords — Android, Black Box Testing, Cronbach's Alpha, likert, Saka Tunggal Mosque, Multimedia Development Life Cycle (MDLC).
Small Object Detection and Object Counting for Primary Roe Dataset Based on Yolo Saputra, Wahyu Andi; Nugroho, Nicolaus Euclides Wahyu; Febrianto, Dany Candra; Yunus, Andi Prademon; Gustalika, Muhammad Azrino; Choo, Yit Hong
JURNAL TEKNIK INFORMATIKA Vol. 18 No. 1: JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v18i1.46063

Abstract

This research offers an initial exploration into the effectiveness of three variations of the YOLOv8 model original, trimmed, and YOLOv8n.pt in combination with two distinct datasets characterized by tight and loose distributions of roe, aimed at enhancing small object detection and counting accuracy. Utilizing a primary roe dataset across 776 images, the research systematically compares these model-dataset configurations to identify the most effective combination for precise object detection. The experimental results reveal that the YOLOv8n.pt model combined with the loosely distributed dataset achieves the highest detection performance, with a mean Average Precision (mAP) of 53.86%. This outcome underscores the critical impact of both model selection and data distribution on the detection accuracy in machine learning applications. The findings highlight the importance of tailored model and dataset synergies in optimizing detection tasks, particularly in complex scenarios involving small, densely clustered objects. This research contributes valuable insights into the strategic deployment of neural network architectures for refined object detection challenges.