Windari, Ratih
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

TINJAUAN IMPLEMENTASI NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY (NIST) DALAM MENINGKATKAN KEAMANAN JARINGAN DENGAN CYBERSECURITY FRAMEWORK (CSF) : STUDI KASUS SMKN4 BANDAR LAMPUNG Windari, Ratih; Sriyanto, Sriyanto
JURNAL ILMU KOMPUTER, SISTEM INFORMASI, TEKNIK INFORMATIKA Vol 3 No 1 (2024)
Publisher : PT Akom Media Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Penelitian ini menyelidiki penerapan Kerangka Kerja Keamanan Siber (CSF) dari National Institute of Standards and Technology (NIST) untuk meningkatkan keamanan jaringan di SMKN4 Bandar Lampung. Dalam studi kasus ini, CSF digunakan sebagai metodologi untuk menganalisis, merencanakan, dan meningkatkan strategi keamanan siber di lingkungan pendidikan. Tujuan penelitian ini adalah untuk mengevaluasi efektivitas penerapan CSF dalam meningkatkan keamanan jaringan di SMKN4 Bandar Lampung. Metode penelitian yang digunakan melibatkan analisis mendalam terhadap infrastruktur jaringan yang ada, implementasi langkah-langkah keamanan CSF, dan evaluasi dampaknya terhadap keamanan sistem. Hasil dari penelitian ini diharapkan dapat memberikan wawasan tentang bagaimana penerapan CSF dapat memberikan manfaat konkret dalam meningkatkan keamanan jaringan di lingkungan pendidikan seperti SMKN4 Bandar Lampung.
A Prediksi Rekomendasi Pemilihan Kejuruan pada Sekolah Menengah Kejuruan Menggunakan Perbandingan Metode Decision Tree C4.5 dan Naïve Bayes Windari, Ratih; Nugroho, Handoyo Widi
Building of Informatics, Technology and Science (BITS) Vol 6 No 4 (2025): March 2025
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i4.6928

Abstract

SMK Negeri 4 Bandar Lampung faces challenges in assisting students in selecting a major that aligns with their potential, interests, and abilities. The decision-making process for choosing a major is often influenced by subjective factors that lack transparency and may not be entirely accurate. Therefore, a system is needed to provide more accurate and objective recommendations. This study develops a predictive system for major selection at SMK Negeri 4 Bandar Lampung using two methods: the Decision Tree C4.5 algorithm and the Naïve Bayes algorithm. The system utilizes seven key attributes as predictive variables, including mathematics scores, English scores, science (IPA) scores, Indonesian language scores, academic achievements, participation in extracurricular activities, and color blindness condition. The study findings indicate that the C4.5 algorithm achieves an accuracy of 84.46%, whereas the Naïve Bayes algorithm outperforms it with an accuracy of 92.23%. This suggests that the Naïve Bayes algorithm is more effective for this application. Nevertheless, both methods still have limitations that can be improved through parameter optimization and more in-depth data processing. The implementation of this data-driven system is expected to enhance the efficiency of providing more relevant major recommendations at SMK Negeri 4 Bandar Lampung and serve as an inspiration for other schools to adopt similar approaches to improve education quality.