This Author published in this journals
All Journal ILKOM Jurnal Ilmiah
Fajar Abdillah, Moh
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Comparative Analysis of Long Short-Term Memory Architecture for Text Classification Fajar Abdillah, Moh; Kusnawi, Kusnawi
ILKOM Jurnal Ilmiah Vol 15, No 3 (2023)
Publisher : Prodi Teknik Informatika FIK Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/ilkom.v15i3.1906.455-464

Abstract

Text classification which is a part of NLP is a grouping of objects in the form of text based on certain characteristics that show similarities between one document and another. One of methods used in text classification is LSTM. The performance of the LSTM method itself is influenced by several things such as datasets, architecture, and tools used to classify text. On this occasion, researchers analyse the effect of the number of layers in the LSTM architecture on the performance generated by the LSTM method. This research uses IMDB movie reviews data with a total of 50,000 data. The data consists of positive, negative data and there is data that does not yet have a label. IMDB Movie Reviews data go through several stages as follows: Data collection, data pre-processing, conversion to numerical format, text embedding using the pre-trained word embedding model: Fastext, train and test classification model using LSTM, finally validate and test the model so that the results are obtained from the stages of this research. The results of this study show that the one-layer LSTM architecture has the best accuracy compared to two-layer and three-layer LSTM with training accuracy and testing accuracy of one-layer LSTM which are 0.856 and 0.867. While the training accuracy and testing accuracy on two-layer LSTM are 0.846 and 0.854, the training accuracy and testing accuracy on three layers are 0.848 and 864.