Claim Missing Document
Check
Articles

Found 2 Documents
Search

Carbon Dots-based Antifungal Coating Film Against Pathogens Colletotrichum sp. for Active Coating Application of Mango Safitri, Idayu; Sugiarti, Sri; Darmawan, Noviyan
Science and Technology Indonesia Vol. 9 No. 1 (2024): January
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2024.9.1.173-182

Abstract

Mangos are one of horticultural products that are leading the Indonesian agricultural industry. Simple post-harvest handling leads to high damage. The most common causes is anthracnose disease caused by Colletotrichum sp. Therefore, it’s necessary to modify the existing methods in postharvest handling such as coating. Adding active agents such as carbon dot (CD) in coating material to prevent anthracnose from growing and shorten the shelf life. This study aims to investigate the applicability and antifungal properties of CD as a composite coating. CDs were synthesized using chitosan as the carbon source in a one-pot hydrothermal technique. The CDs have blue-emitting luminescence caused by the functional group at the surface of CD. The CDs were used to prepare chitosan/pectin (Chi/Pec)-based composite coatings. The addition of CDs increased the viscosity and density of composites, increased the blue-emitting luminescence, and showed potential antioxidant activity. The CDs and composite coatings exhibited high antifungal activity against Colletotrichum sp. by agar well diffusion method and were classified as very strong antifungal agents. The chitosan/pectin/CDs-coating effectively reduced the growth of black spots on the surface of mangos and increased the fruit shelf life of the fruit by 24 days. The CDs are evidently safe, affordable, and value-added nanomaterials that can be used to prepare active packaging applications.
Comparing Three Methods for Producing Carbon Dots from Mangosteen Peel Sugiarti, Sri; Safitri, Idayu; Darmawan, Noviyan
Jurnal Pijar Mipa Vol. 19 No. 2 (2024): March 2024
Publisher : Department of Mathematics and Science Education, Faculty of Teacher Training and Education, University of Mataram. Jurnal Pijar MIPA colaborates with Perkumpulan Pendidik IPA Indonesia Wilayah Nusa Tenggara Barat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/jpm.v19i2.4986

Abstract

Carbon dots are fluorescent nanoparticles that are around 10 nm in size. Carbon dots can be formed via pyrolysis, hydrothermal, and solvothermal procedures from raw materials such as mangosteen peels. Because it contains cyanidin and xanthone, which improve the intensity of carbon dot fluorescence, mangosteen peel waste can be utilized to make carbon dots. The presence of a urea passivation agent is expected to boost carbon dot luminescence intensity. The study aimed to develop carbon dots from mangosteen peel using three different methods: pyrolysis, hydrothermal, and solvothermal, and to assess their ability to produce luminous hues. Carbon dot yield was 21% by the solvothermal method, 5% by the hydrothermal method, and 2% by pyrolysis. All three methods produced blue carbon dot luminescence. The solvothermal method, hydrothermal procedure, and pyrolysis had the highest luminescence intensity. Adding urea as a passivation agent increased the luminescence of carbon dots. The solvothermal approach produced the highest carbon dot production and fluorescence intensity. The hydrothermal and solvothermal carbon dots made emissions at wavelengths of 413 nm and 454 nm, respectively, both corresponding to blue luminescence.