Claim Missing Document
Check
Articles

Found 2 Documents
Search

The Effect of Using Augmented Reality on Student Learning Outcomes in Social Studies Learning at MTS Nurus Syafi'i Sidoarjo Anugerah, Herianto Dwi; Chandra, Francisca H.
Jurnal Sistem Telekomunikasi Elektronika Sistem Kontrol Power Sistem dan Komputer Vol 3 No 2: JTECS Juli 2023
Publisher : FAKULTAS TEKNIK UNIVERSITAS ISLAM KADIRI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32503/jtecs.v3i2.3961

Abstract

Saat ini, metode pengajaran yang umum digunakan oleh banyak guru dalam IPS adalah melalui ceramah dan latihan soal, namun hal ini dapat memberikan dampak negatif terhadap hasil belajar dan motivasi siswa. Dengan demikian, peneliti telah mengembangkan suatu bentuk media pembelajaran yang interaktif dan menarik dengan memanfaatkan Augmented Reality (AR), di mana objek maya 3D diintegrasikan ke dalam lingkungan nyata. Penelitian ini bertujuan untuk mengeksplorasi dampak yang timbul dari penerapan teknologi AR dalam pembelajaran Ilmu Pengetahuan Sosial (IPS) terhadap pencapaian belajar dan tingkat motivasi siswa di MTS Nurus Syafi'i Sidoarjo. Hasil penelitian menunjukkan bahwa penerapan AR memberikan dampak positif terhadap prestasi belajar dan motivasi siswa. Penelitian ini memiliki implikasi penting dalam pengembangan pendidikan dan pembelajaran, serta memberikan informasi berharga kepada guru, lembaga pendidikan, dan pengambil keputusan dalam mengoptimalkan penggunaan teknologi AR dalam konteks pembelajaran IPS.
Prediksi Student Performance Pada Hasil Penilaian Proses Pembelajaran Online Mata Pelajaran Informatika Di SMA Dipa, Sasra; Santoso, Joan; Chandra, Francisca H.
J-INTECH (Journal of Information and Technology) Vol 12 No 1 (2024): J-Intech : Journal of Information and Technology
Publisher : LPPM STIKI MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32664/j-intech.v12i1.1259

Abstract

In the Corona Endemic, we are not just returning to offline education patterns but are already moving towards education 5.0. Online, normal, blended learning patterns have become commonplace. Online learning assessment requires fast and precise predictions of student performance (high accuracy). The reason is first, due to limited direct interaction. Second, normal learning usually involves an assessment of the learning process and character assessment to be able to provide an accurate final assessment, which is difficult to implement in online learning accurately. Third, there is a lot of data to be processed quickly and precisely so that it can be reported to educational institutions and to students' families. Fourth, Informatics is a lesson that is 80% practical and 20% theory so that the assessment instruments used are 80% performance instruments (Bloom's taxonomy: C2, C3, C4, C5) and 20% multiple choice instruments (C1). Informatics correction and assessment requires more time because 80% cannot be assessed automatically. This research aims to predict student performance (Pass (1) or Intervention (0)) on the results of the online learning process assessment for informatics subjects in high school. If the student performance prediction results in an intervention, it will be immediately followed up by providing an intervention strategy to increase student performance. The target of the research results is to achieve > 70% accuracy on the processed dataset. This research uses the ensemble learning method random Forest Classification and XG Boosting classification. The research results of Student Performance Prediction using XG Boost Classification produce higher accuracy than RF Classification which has an average accuracy value = 93% while RF Classification has an average accuracy result = 92%. The research objectives have been achieved because the results of the 2 methods used have met the desired targets.