p-Index From 2021 - 2026
0.408
P-Index
This Author published in this journals
All Journal METIK JURNAL
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Analisis DistilBERT dengan Support Vector Machine (SVM) untuk Klasifikasi Ujaran Kebencian pada Sosial Media Twitter Azmi Verdikha, Naufal; Habid, Reza; Johar Latipah, Asslia
METIK JURNAL Vol 7 No 2 (2023): METIK Jurnal
Publisher : LPPM Universitas Mulia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47002/metik.v7i2.583

Abstract

Hate speech is a significant issue in content management on social media platforms. Effective classification of hate speech plays a crucial role in maintaining a safe social media environment, combating discrimination, and protecting users. This study evaluates a hate speech classification model using SVM with linear and polynomial kernels. The dataset used consists of labeled Indonesian-language tweets. The importance of developing an effective classification model to address hate speech has led to the utilization of DistilBERT as a feature extraction method. However, DistilBERT has high-dimensional features, necessitating dimensionality reduction to reduce model complexity. Therefore, in this study, the PCA dimensionality reduction method is implemented with various scenarios of dimensionality, namely 10, 20, 30, 40, and 50. Evaluation is performed using F1-Score, and the entire study is evaluated using 10-fold cross-validation. The evaluation results indicate that in the scenario with a linear kernel, the model achieves the highest F1-Score of 0.75 in the 50-dimensional scenario. Meanwhile, in the scenario with a polynomial kernel, the model achieves the highest F1-Score of 0.7857 in the 50-dimensional scenario. These findings demonstrate that the use of a polynomial kernel with 50 dimensions yields the best performance in classifying hate speech.
Analisis DistilBERT dengan Support Vector Machine (SVM) untuk Klasifikasi Ujaran Kebencian pada Sosial Media Twitter Azmi Verdikha, Naufal; Habid, Reza; Johar Latipah, Asslia
METIK JURNAL (AKREDITASI SINTA 3) Vol. 7 No. 2 (2023): METIK Jurnal
Publisher : LPPM Universitas Mulia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47002/metik.v7i2.583

Abstract

Hate speech is a significant issue in content management on social media platforms. Effective classification of hate speech plays a crucial role in maintaining a safe social media environment, combating discrimination, and protecting users. This study evaluates a hate speech classification model using SVM with linear and polynomial kernels. The dataset used consists of labeled Indonesian-language tweets. The importance of developing an effective classification model to address hate speech has led to the utilization of DistilBERT as a feature extraction method. However, DistilBERT has high-dimensional features, necessitating dimensionality reduction to reduce model complexity. Therefore, in this study, the PCA dimensionality reduction method is implemented with various scenarios of dimensionality, namely 10, 20, 30, 40, and 50. Evaluation is performed using F1-Score, and the entire study is evaluated using 10-fold cross-validation. The evaluation results indicate that in the scenario with a linear kernel, the model achieves the highest F1-Score of 0.75 in the 50-dimensional scenario. Meanwhile, in the scenario with a polynomial kernel, the model achieves the highest F1-Score of 0.7857 in the 50-dimensional scenario. These findings demonstrate that the use of a polynomial kernel with 50 dimensions yields the best performance in classifying hate speech.