Rizky, Muhammad Hevny
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Effect of Hyperparameter Tuning Using Random Search on Tree-Based Classification Algorithm for Software Defect Prediction Rizky, Muhammad Hevny; Faisal, Mohammad Reza; Budiman, Irwan; Kartini, Dwi; Abadi, Friska
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 18, No 1 (2024): January
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.90437

Abstract

The field of information technology requires software, which has significant issues. Quality and reliability improvement needs damage prediction. Tree-based algorithms like Random Forest, Deep Forest, and Decision Tree offer potential in this domain. However, proper hyperparameter configuration is crucial for optimal outcomes. This study demonstrates the use of Random Search Hyperparameter Setting Technique to predict software defects, improving damage estimation accuracy. Using ReLink datasets, we found effective algorithm parameters for predicting software damage. Decision Tree, Random Forest, and Deep Forest achieved an average AUC of 0.73 with Random Search. Random Search outperformed other tree-based algorithms. The main contribution is the innovative Random Search hyperparameter tuning, particularly for Random Forest. Random Search has distinct advantages over other tree-based algorithms