Jazaudhi’fi, Ahmad
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Recommendation System to Determine Achievement Students Using Naïve Bayes and Simple Additive Weighting (SAW) Methods Jazaudhi’fi, Ahmad; Vitianingsih, Anik Vega; Kristyawan, Yudi; Lidya Maukar, Anastasia; Yasin, Verdi
Digital Zone: Jurnal Teknologi Informasi dan Komunikasi Vol. 15 No. 1 (2024): Digital Zone: Jurnal Teknologi Informasi dan Komunikasi
Publisher : Publisher: Fakultas Ilmu Komputer, Institution: Universitas Lancang Kuning

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31849/digitalzone.v15i1.19746

Abstract

Giving appreciation to outstanding students can motivate students to compete with each other in learning. MA Tanwirul Qulub Tanggungan often experiences difficulties in determining outstanding students due to There is no application that can assist school management in identifying outstanding students, the implementation is considered less than optimal. besides that, the determination of outstanding students is still based on report cards that are only ranked, and there are no criteria that refer to the K-13 curriculum. The purpose of this research is to offer a solution to create a recommendation system for selecting outstanding students using the parameters of midterm exams, final exams, assignments, attendance, attitude, extracurricular activities, organizations, and award certificates using decision support system techniques. Extracurricular grades are taken from Scouting activities only because students are generally required to participate in them. Naïve Bayes and Simple Additive Weighting methods are used in this research, where the Naïve Bayes method classifies the categories of outstanding students and not, while the SAW method is used for ranking. The contribution of this research has the potential to increase school efficiency in student assessment and support efforts to improve the quality of education by rewarding students appropriately. The validation test results of Naïve Bayes and SAW techniques get an accuracy value of 100%, which shows that the SAW method can produce the best alternative recommendations