Claim Missing Document
Check
Articles

Found 5 Documents
Search

Predictive Maintenance with Machine Learning: A Comparative Analysis of Wind Turbines and PV Power Plants Uhanto, Uhanto; Yandri, Erkata; Hilmi, Erik; Saiful, Rifki; Hamja, Nasrullah
Heca Journal of Applied Sciences Vol. 2 No. 2 (2024): September 2024
Publisher : Heca Sentra Analitika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.60084/hjas.v2i2.219

Abstract

The transition to renewable energy requires innovations in new renewable energy sources, such as wind turbines and photovoltaic (PV) systems. Challenges arise in ensuring efficient and reliable performance in their operation and maintenance. Predictive maintenance using machine learning (PdM-ML) is relevant for addressing these challenges by enhancing failure predictions and reducing downtime. This study examines the effectiveness of PdM-ML in wind turbine and PV systems by analyzing operational data, performing data preprocessing, and developing machine learning models for each system. The results indicate that the model for wind turbines can predict failures in critical components such as gearboxes and blades with high accuracy. In contrast, the model for PV systems is effective in predicting efficiency declines in inverters and solar panels. Regarding operational complexity, each model has advantages and disadvantages of its own, but when compared to conventional maintenance techniques, both provide lower costs with greater operational efficiency. In conclusion, machine learning-based predictive maintenance is a promising solution for enhancing the reliability and efficiency of renewable energy systems.
Potential for Electrical Energy Savings in AC Systems by Utilizing Exhaust Heat from Outdoor Unit Hamja, Nasrullah; Yandri, Erkata; Hilmi, Erik; Uhanto, Uhanto; Saiful, Rifki
Heca Journal of Applied Sciences Vol. 2 No. 2 (2024): September 2024
Publisher : Heca Sentra Analitika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.60084/hjas.v2i2.223

Abstract

This study explores the potential of utilizing waste heat from air conditioning systems, one of the largest consumers of electrical energy. Currently, most of the waste heat generated by outdoor units is typically released into the environment without being utilized, leading to missed energy-saving opportunities. This study analyzes the potential for improving electrical energy efficiency in air conditioning (AC) systems by harnessing this waste heat. Two primary approaches are evaluated: the first is the use of waste heat for domestic water heating, and the second is the conversion of heat into electrical energy using thermoelectric generators (TEG). The results of this research indicate that both methods have the potential to improve overall energy efficiency significantly. However, challenges related to conversion efficiency and integration of these technologies with AC systems require further, more specific studies. These findings are expected to contribute to more efficient and environmentally friendly cooling systems by optimizing technology and overcoming barriers to wider implementation.
Optimizing Compressed Air Operations for Electrical Energy Savings: A Case Study in Pharmaceutical Packaging Manufacturing Candra, Arief; Yandri, Erkata; Saiful, Rifki; Uhanto, Uhanto; Hilmi, Erik; Hamja, Nasrullah; Ariati, Ratna
Grimsa Journal of Science Engineering and Technology Vol. 2 No. 2 (2024): October 2024
Publisher : Graha Primera Saintifika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61975/gjset.v2i2.58

Abstract

This study in pharmaceutical packaging manufacturing focuses on improving compressed air efficiency through targeted strategies at both the source and user levels by establishing a baseline to analyze energy consumption patterns. Key measures, including minimizing air leaks, adjusting pressure, and optimizing compressor performance, aim to achieve a 20-50% increase in efficiency, thereby supporting environmental sustainability. The User Point and Source Point approaches are expected to lower Specific Power Consumption (SPC), with data collected from December 2020 to May 2022 providing insights into potential energy savings. Establishing this baseline, based on machine runtime and productivity, offers a solid foundation for evaluation. Results show a 23% reduction in compressor electricity usage and a 7-8% decrease in compressed air consumption. A structured improvement process and strong collaboration between engineering and management are essential for enhancing productivity and achieving sustainable energy efficiency in the industrial sector.
Hybrid Energy Solutions for Sustainable Offshore Oil and Gas Operations: Leveraging Thermoelectric, Solar, and Wind Potential Hilmi, Erik; Yandri, Erkata; Uhanto, Uhanto; Saiful, Rifki; Hamja, Nasrullah
Leuser Journal of Environmental Studies Vol. 2 No. 2 (2024): October 2024
Publisher : Heca Sentra Analitika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.60084/ljes.v2i2.218

Abstract

The transition towards sustainable offshore oil and gas operations is increasingly important given the declining conventional energy reserves and growing environmental concerns. This research developed a concept design to enhance sustainability in offshore operations by integrating local solar and wind energy sources. The proposed hybrid system combines solar energy systems and wind turbines with traditional Thermoelectric Generators (TEGs), which have traditionally relied on natural gas. The study found that incorporating these renewable energy sources into the system significantly reduces carbon emissions, lowers dependency on fossil fuels, and improves overall operational efficiency. The main conclusion of this research is that integrating local renewable energy sources into offshore operations mitigates environmental impact, offers long-term cost savings, and enhances energy security. This framework provides practical solutions for the energy sector's transition towards greener, more resilient offshore operations.
Optimizing Motorcycle Manufacturing Sustainability through the Integration of Waste Heat Recovery and Metal Scrap Recycling: A Process Engineering Approach Saiful, Rifki; Yandri, Erkata; Hilmi, Erik; Hamja, Nasrullah; Uhanto, Uhanto; Fitriani, Fitriani; Ibrahim, Riki Firmandha
Leuser Journal of Environmental Studies Vol. 2 No. 2 (2024): October 2024
Publisher : Heca Sentra Analitika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.60084/ljes.v2i2.225

Abstract

The automotive industry manufacturing has experienced rapid growth 2–3 times by 2050, with motorcycles constituting around 30% of vehicles worldwide, but this increase in production has significantly heightened the demand for raw materials and energy. A major challenge arises in managing material waste and waste heat generated during the manufacturing process. This research aims to develop a framework that optimizes the synergy between material waste recycling and waste heat recovery to enhance the sustainability of the motorcycle industry, reduce waste, and lower energy consumption. The design leverages waste heat from the melting process to preheat raw materials, raising temperatures from around 50 °C to 350 °C before melting, thereby reducing additional energy needs, lowering emissions, and decreasing operational costs. Utilizing waste heat for preheating not only mitigates environmental impact and thermal load but also significantly improves energy efficiency, ultimately resulting in cost savings and optimized resource use. Utilizing waste heat directly for preheating raw materials has effectively lowered energy consumption by as much as 30%. This approach not only improves operational efficiency but also decreases production costs and minimizes environmental impact, offering a more sustainable solution for the manufacturing sector.