Claim Missing Document
Check
Articles

Found 2 Documents
Search

Klasifikasi Penyakit Daun Bawang Menggunakan Algoritma CNN Xception Amrulloh, M. Farij; Pamungkas, Danar Putra
Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi) Vol. 8 No. 1 (2024): PROSIDING SEMINAR NASIONAL INOVASI TEKNOLOGI TAHUN 2024
Publisher : Universitas Nusantara PGRI Kediri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29407/inotek.v8i1.5011

Abstract

Daun bawang (Allium fistulosum) merupakan komoditas penting dalam pertanian, namun produktivitasnya sering terhambat oleh penyakit. Deteksi dini penyakit daun bawang sangat penting untuk mengurangi dampak negatifnya. Penelitian ini menggunakan metode Convolutional Neural Network (CNN) arsitektur Xception untuk klasifikasi penyakit daun bawang. Data dikumpulkan, model dilatih dengan parameter seperti batch size 16, epoch 100, dropout 0,2, learning rate 0,00001, dan optimizer Adam. Hasil pelatihan menunjukkan akurasi training 100% dan validasi 95%. Evaluasi dengan confusion matrix menunjukkan akurasi 100% pada data uji. Model Xception terbukti efektif dalam klasifikasi penyakit daun bawang merah, dengan akurasi tinggi dan kemampuan generalisasi yang baik. Hasil ini menunjukkan potensi penerapan AI dalam meningkatkan produktivitas pertanian melalui deteksi dini penyakit tanaman.
ANALISIS HASIL KLASIFIKASI PENYAKIT DAUN BAWANG MERAH MENGGUNAKAN CNN ARSITEKTUR EXCEPTION Pamungkas, Danar Putra; Amrulloh, M. Farij
JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) Vol 10, No 1 (2025)
Publisher : STKIP PGRI Tulungagung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29100/jipi.v10i1.5875

Abstract

Dalam beberapa dekade terakhir, industri pertanian telah mengalami transformasi signifikan dengan penerapan teknologi canggih seperti kecerdasan buatan (AI) dan pembelajaran mesin (ML). Tantangan utama dalam sektor ini adalah identifikasi dan klasifikasi penyakit tanaman secara akurat dan efisien. Salah satu solusi yang menjanjikan adalah penerapan Convolutional Neural Networks (CNN), khususnya arsitektur Xception yang terkenal efektif dalam tugas klasifikasi gambar. Penelitian ini mengeksplorasi implementasi Xception dalam klasifikasi penyakit daun bawang merah (Allium ascalonicum), yang merupakan tanaman penting namun rentan terhadap berbagai penyakit seperti bercak daun (Alternaria porri), layu bakteri (Erwinia carotovora), dan ulat Grayak (Spodoptera exigua). Dataset gambar daun bawang merah digunakan untuk menguji kinerja model Xception dalam mengidentifikasi berbagai jenis penyakit. Hasil penelitian menunjukkan bahwa model terbaik yang menggunakan batch size 16 dan epoch 100 mencapai akurasi 99.71% dan validasi 97.37%. Pengujian menggunakan confusion matrix terhadap 96 data uji menghasilkan 89 klasifikasi benar dan 7 klasifikasi salah, menunjukkan tingkat akurasi 92%. Penelitian ini berkontribusi dalam peningkatan efisiensi dan akurasi deteksi penyakit tanaman, mendukung pertanian presisi dan pengembangan sistem deteksi penyakit tanaman yang lebih maju dan terotomatisasi.