Abbo, Khalil K.
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Learning Fuzzy Neural Networks by Using Improved Conjugate Gradient Techniques Khudhur, Hisham M.; Abbo, Khalil K.
Sinkron : jurnal dan penelitian teknik informatika Vol. 6 No. 3 (2022): Article Research Volume 6 Number 3, July 2022
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v7i3.11442

Abstract

One of the optimal approaches for learning a Takagi Sugeno-based fuzzy neural network model is the conjugate gradient method proposed in this research. For the PRP and the LS approaches, a novel algorithm based on the Liu-Storey (LS) approach is created to overcome the slow convergence. The developed method becomes descent and convergence by assuming some hypothesis. The numerical results show that the developed method for classifying data is more efficient than the other methods, as shown in Table (2), where the new method outperforms the others in terms of average training time, average training accuracy, average test accuracy, average training MSE, and average test MSE.