Damarsiwi, Dyah Kartika
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Face Detection in Complex Background using Scale Invariant Feature Transform and Haar Cascade Classifier Methods Damarsiwi, Dyah Kartika; Pambudi, Elindra Ambar; Fitriani, Maulida Ayu; Wibowo, Feri
Sinkron : jurnal dan penelitian teknik informatika Vol. 8 No. 2 (2024): Article Research Volume 8 Issue 2, April 2024
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i2.13556

Abstract

Face detection is a process by a computer system that can find and identify human faces in digital images or videos. One of the main challenges faced in the face detection process is the complex background. Complex backgrounds, such as many color combinations in the image, can interfere with the detection process. To overcome this challenge, this research uses a combination of two methods: Scale Invariant Feature Transform (SIFT) and Haar Cascade Classifier. Scale Invariant Feature Transform (SIFT) is a method used in image processing to identify and describe unique features in an image. The SIFT method looks for keypoint descriptors in images that can be used as a reference in comparing different images. After the keypoint descriptor is found with SIFT, the Haar Cascade Classifier method is used to detect faces in the image. Haar Cascade Classifier is a practical algorithm for object detection in images. After facial features are extracted with these two methods, the results are compared with the K-Nearest Neighbor (KNN) approach. This research involves the introduction of 28 color images with complex backgrounds. The results of combining these two methods produce an accuracy of 81.75%. This shows that combining these two methods effectively overcomes complex background challenges in face detection.