Nurul Zalza Bilal Jannah
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Comparison of Naïve Bayes and SVM in Sentiment Analysis of Product Reviews on Marketplaces Nurul Zalza Bilal Jannah; Kusnawi, Kusnawi
Sinkron : jurnal dan penelitian teknik informatika Vol. 8 No. 2 (2024): Article Research Volume 8 Issue 2, April 2024
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i2.13559

Abstract

At this time more and more people are switching to shopping online in existing marketplaces such as Shopee. Marketplaces provide various advantages and disadvantages to customers such as lower costs and goods sent not according to orders. Product reviews from customers greatly affect the sales level of business people so that sentiment analysis is carried out. The importance of conducting sentiment analysis of product reviews in the marketplace is to add an overview of how the product is received by users. This research uses Naïve Bayes and SVM algorithms for sentiment analysis of beauty care product review datasets obtained from Shopee scraping results. This research implements k fold cross validation for data splitting process of 10 folds. The Naïve Bayes algorithm obtained the highest accuracy value of 85.53% on fold 2 and the lowest accuracy value of 77.16% on fold 3. While the SVM algorithm obtained the highest accuracy value of 88.58% on fold 2 and the lowest accuracy value of 82.99% on fold 7. With this it is stated that SVM can work better for sentiment analysis of beauty care product reviews on the Shopee marketplace because it gets a higher average accuracy value of 86.14% compared to the Naïve Bayes algorithm.