Gultom, Atap
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Lung Cancer Classification Using Combination Of Efficientnet And Visual Geometry Group Algorithm Husein, Amir Mahmud; Astasachindra, Rishi; Sormin, Pedro Samuel; Lovely, Veryl; Gultom, Atap
Sinkron : jurnal dan penelitian teknik informatika Vol. 8 No. 3 (2024): Research Artikel Volume 8 Issue 3, July 2024
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i3.13831

Abstract

Lung cancer is one of the leading causes of mortality All around the world. It is classified into three main types: Adenocarcinoma of the lung (ACA), Non-small cell lung cancer (N), and Squamous Cell Carcinoma of the lung (SCC). Lung Cancer Classification is crucial on development of effective treatments. This study aims to improve the accuracy of lung cancer classification through the integration of a hybrid model, which combines two Convolutional Neural Networks architectures, namely EfficientNet-B7 and VGG-16. A set of histopathology images was subjected to testing, with the data split into three categories: 60% for training, 30% for validation, and 10% for testing. Prior to use, each image underwent a preprocessing process, wherein it was resized to 256x256 pixels. The model test results achieved an accuracy, precision, recall, and F1-score of 98.73%, which is superior to the EfficientNet-B7 base model. The findings of this study demonstrate the potential of hybrid models to improve accuracy in lung cancer classification. The utilization of hybrid models has the potential to contribute significantly to the beginning diagnosis and appropriate Lung Cancer Therapies. Future research will focus on improving the model through the application of image segmentation techniques and expanding the scope of classification to other types of lung cancer. Optimization of the hybrid model architecture using novel techniques such as the attention mechanism or transfer learning will be conducted to improve the efficiency and accuracy of the model. Additionally, a system that can be integrated into clinical practice will be developed