Mangesh, Sangeeta
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

KFREAIN: Design of A Kernel-Level Forensic Layer for Improving Real-Time Evidence Analysis Performance in IoT Networks Shukla, Seema; Mangesh, Sangeeta; Chhabra, Prachi
EMITTER International Journal of Engineering Technology Vol 11 No 2 (2023)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24003/emitter.v11i2.804

Abstract

An exponential increase in number of attacks in IoT Networks makes it essential to formulate attack-level mitigation strategies. This paper proposes design of a scalable Kernel-level Forensic layer that assists in improving real-time evidence analysis performance to assist in efficient pattern analysis of the collected data samples. It has an inbuilt Temporal Blockchain Cache (TBC), which is refreshed after analysis of every set of evidences. The model uses a multidomain feature extraction engine that combines lightweight Fourier, Wavelet, Convolutional, Gabor, and Cosine feature sets that are selected by a stochastic Bacterial Foraging Optimizer (BFO) for identification of high variance features. The selected features are processed by an ensemble learning (EL) classifier that use low complexity classifiers reducing the energy consumption during analysis by 8.3% when compared with application-level forensic models. The model also showcased 3.5% higher accuracy, 4.9% higher precision, and 4.3% higher recall of attack-event identification when compared with standard forensic techniques. Due to kernel-level integration, the model is also able to reduce the delay needed for forensic analysis on different network types by 9.5%, thus making it useful for real-time & heterogenous network scenarios.