Claim Missing Document
Check
Articles

Found 1 Documents
Search

STUDI KOMPARASI ALGORITMA NAÏVE BAYES DAN K-NN UNTUK KLASIFIKASI PENERIMAAN BEASISWA DI MI AL – ISLAMIYAH KARANGSAWAH Muslim Hidayat; Afif Nazmi Fuadi; Dimas Prasetyo Utomo; Erna Dwi Astuti; Dian Asmarajati
STORAGE: Jurnal Ilmiah Teknik dan Ilmu Komputer Vol. 2 No. 4 (2023): November
Publisher : Yayasan Literasi Sains Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55123/storage.v2i4.2865

Abstract

Pemberian beasiswa dilakukan agar para siswa dapat tetap melanjutkan sekolah, dalam menyeleksi siswa parameter yang digunakan terdiri dari jarak, tanggungan, pekerjaan orag tua, pendapatan orang tua, kelengkapan keluarga dan kelayakan. Dikarenakan belum ada metode untuk menentukan penerima beasiswa maka sering salah sasaran dalam memberikan beasiswa. Oleh karena itu diperlukan klasifikasi penerima beasiswa yang tepat dan akurat. Salah satunya data mining dengan metode deskriptif analitis. Bisa dikatakan penelitian deskriptif analitis mengambil masalah atau memperhatikan masalah- masalah yang ada saat penelitian kemudian diolah untuk mendapatkan sebuah kesimpulan.Berdasarkan hasil analisis dan pembahasan studi komparasi algoritma naïve bayes dan K-NN untuk klasifikasi penerimaan beasiswa di MI AL-Islamiyah, dari 186 data siswa yang terdiri dari 150 data training dan 36 data testing diperoleh Hasil klasifikasi dengan Naïve Bayes dan K-Nearest Neighbor diperoleh masing-masing 91,67% dan 75,00%. Berdasarkan nilai akurasi yan diperoleh dari dua algoritma tersebut, maka akurasinya termasuk excellent classification., dan algoritma Naïve Bayes lebih baik dalam klasifikasi penerimaan beasiswa dibandingkan algoritma K-Nearest Neighbor.