Claim Missing Document
Check
Articles

Found 1 Documents
Search

Implementasi InceptionV3 untuk Deteksi Fase Estrus Sapi Betina berbasis Raspberry Pi Farrassy, Muhtady; Utaminingrum, Fitri
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 8 No 2 (2024): Februari 2024
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Indonesia memainkan peran sentral dalam industri peternakan global sebagai penyedia utama sumber daya protein hewani. Meskipun telah mengalami modernisasi, terdapat tantangan terkait ketersediaan daging sapi yang tidak memadai untuk memenuhi permintaan. Produksi daging yang menurun di Indonesia dipengaruhi oleh berbagai faktor, termasuk kegagalan inseminasi buatan (IB). Menurut survey Fakultas Peternakan Universitas Brawijaya, peternak mengalami kendala dalam menerapkan proses IB (Humas Fapet, 2023). Kendala ini diakibatkan oleh ketidaktahuan peternak akan tanda-tanda birahi (estrus) pada sapi. Metode deteksi fase estrus konvensional menggunakan pengamatan visual vulva memiliki keterbatasan. Oleh karena itu, penelitian ini mengusulkan implementasi teknologi deep learning dengan metode InceptionV3 berbasis Raspberry Pi untuk mendeteksi fase estrus pada sapi betina. InceptionV3 merupakan model deep learning untuk klasifikasi citra yang memakai arsitektur Convolutional Neural Network (CNN). Model arsitektur ini dibangun menggunakan transfer learning dan pelatihan terhadap dataset citra berdua kelas, yakni Estrus dan Normal. Model InceptionV3 menghasilkan nilai accuracy sebesar 0.90027, precision sebesar 0.89384, recall sebesar 0.90843, dan f1-score sebesar 0.90107 pada pelatihan model. Model yang sudah dilatih tersebut diload ke dalam Raspberry Pi untuk dilakukan pengujian deteksi terhadap sapi betina. Pengujian tersebut menghasilkan akurasi sistem sebesar 90% dengan rata-rata waktu komputasi sebesar 26.27 detik.