Claim Missing Document
Check
Articles

Found 2 Documents
Search

Investigation of duty cycle controlled inductive wireless power transfer converter using series-series compensation for electric vehicle application Bhukya, Bhavsingh; Gotluru, Suresh Babu; Bhukya, Mangu; Bhukya, Ravi Kumar; Dongari, Vaani
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 6: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i6.pp6214-6224

Abstract

This paper presents series-series (SS) compensation topologies that include both primary side duty cycle control (PSDCC) and secondary side duty cycle control (SSDCC) methods. The main challenge for noncontact charging (NCC) for electric vehicles (EVs) batteries, the power transfer capability and efficiency in primary side proved to be unproductive. The investigation considers the primary side control duty cycle control (transmitter and receiver) and the secondary side duty cycle control (transmitter and receiver) in terms of compensation capacitor voltage, coil voltage, load side voltage, current, and power. By adjusting the duty cycle within the range of 0.1 to 0.5, it is possible to control power without significantly decreasing the system's efficiency, by using the SSDCC method. The evaluated parameters, including 1.5 kW output power, 85 kHz resonance frequency, and 120 mm ground clearance, are suitable for three-wheeler auto rickshaws. These findings are verified through MATLAB/Simulink software and compared with experimental results.
Investigation of 1.5 kW secondary side power controlled method in a inductive wireless power transfer system Bhavsingh, Bhukya; Gotluru, Suresh Babu; Bhukya, Mangu; Bhukya, Ravikumar
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 15, No 2: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v15.i2.pp670-684

Abstract

The contemporary and utilitarianism of the existing consumer world is advancing towards the better world technical benefits in the electrical world such as wired phase to wireless phase utilizing its volatile features. This paper addresses the battery performance in constant current (CC), constant voltage (CV) through inductive wireless power transfer (IWPT) systems. To analyze this workable mode, the researcher has proposed the series-series (S-S) compensation topology which is load independent current output. While charging the battery through wireless, the coil resistance is found to be affected by the battery's current and power. To figure out a practical solution, the researcher has introduced novel closed loop bi-directional switches with duty cycle control. The existing theoretical and simulated results have been analyzed with 1.5 kW, 120 mm air-gap and 85 kHz frequency. In this connection, the researcher has self-developed a prototype to better understand the theoretical perceptions of the proposed WPT system.