Claim Missing Document
Check
Articles

Found 3 Documents
Search

Drone direction estimation: phase method with two-channel direction finder Kozhabayeva, Indira; Yerzhan, Assel; Boykachev, Pavel; Manbetova, Zhanat; Imankul, Manat; Yauheni, Builou; Solonar, Andrey; Dunayev, Pavel
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i3.pp2779-2789

Abstract

This scientific article presents a block diagram of a two-channel radio direction finder that effectively uses the phase method to determine the direction of the signal source. The main attention is paid to the mathematical model of the formation of the cardioid radiation pattern of biconical antennas, which have unique directivity characteristics. These features significantly affect the accuracy and reliability of the bearing determination process. The developed algorithm aims to accurately determine the direction of motion of an unmanned aerial vehicle, especially in the context of a two-channel radio receiver and a five-element antenna system. This antenna system provides unique capabilities for increased resolution and directional accuracy. The article also touches on the issue of software implementation of the developed algorithm, which is aimed at increasing the number of generated bearing estimates in conditions of limited time for observing an unmanned aerial vehicle. Thus, the proposed method is of interest in the field of precision direction finding in the context of small unmanned vehicles.
Study of the characteristics of broadband matching antennas for fifth-generation mobile communications based on new composite materials Nakisbekova, Balausa; Yerzhan, Assel; Boykachev, Pavel; Manbetova, Zhanat; Imankul, Manat; Shener, Anar; Yermekbaev, Muratbek; Dunayev, Pavel
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i3.pp2885-2895

Abstract

The presented research aims to analyze in detail the characteristics of broadband matching antennas specifically designed for 5G mobile communications applications, with an emphasis on innovative composite materials. The study focuses on a compact planar loop antenna designed for use on smartphones, covering the LTE/WWAN frequency bands 824 to 960 MHz, 1,710 to 2,690 MHz, and 3,300 to 3,600 MHz for full coverage of modern 5G networks. Experimental and numerical methods are used to broadly analyze the frequency range associated with 5G networks. The features of the use of composite materials in the implementation of antenna devices in 5G technologies are noted. A broadband matching circuit (BMC) with elements with lumped parameters and a reduced sensitivity invariant has been synthesized. A 3D model of the adaptive selective surface controller (SSC) was developed using CST Studio. The study results highlight the benefits of new composite materials in improving the performance of 5G antennas. This research makes a significant contribution to the development of 5G technologies by optimizing antenna design for efficient data transmission in modern mobile networks and can be a valuable resource for engineers and designers working in this field.
Method of undetermined coefficients for circuits and filters using Legendre functions Manbetova, Zhanat; Dunayev, Pavel; Yerzhan, Assel; Imankul, Manat; Zhazykbayeva, Zhazira; Seitova, Zhadra; Dzhanuzakova, Raushan; Karnakova, Gayni
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 1: February 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i1.pp846-854

Abstract

This article presents a new way to implement matching networks and filters using the method of undetermined coefficients. A method is proposed for approximating the transmission coefficient of the synthesized filter, taking into account the required amplitude-frequency characteristics. To synthesize the filter, an approximating function (AF) was used using orthogonal Legendre polynomials, which is a mathematical description using a system of equations. Filter properties whose implementation is based on modified Legendre approximating functions usually depend on the interval on which they are defined and have the property that they are orthogonal on this interval. An example of seventh order filter synthesis using modified Legendre approximating functions is given. The filter circuit is implemented, the elements of the filter circuit are calculated based on the selected approximating modified function. The criteria used were minimization of the unevenness of the group delay time (GDT) and minimization of the complex approximation error for given values of the AF parameters. As a result, the number of filter elements, the group delay value and the complex approximation error are significantly reduced.