Ramaswamy, Nataraj Kanathur
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

A novel smart contract based blockchain with sidechain for electronic voting Mullegowda, Rakshitha Channarayapatna; Hiremani, Nirmala; Birje, Mahantesh; Ramaswamy, Nataraj Kanathur
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 1: February 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i1.pp617-630

Abstract

Several countries have been researching digital voting methods in order to overcome the challenges of paper balloting and physical voting. The recent coronavirus disease 2019 (COVID-19) epidemic has compelled the remote implementation of existing systems and procedures. Online voting will ultimately become the norm just like unified payments interface (UPI) payments and online banking. With digital voting or electronic voting (e-voting) a small bug can cause massive vote rigging. E-voting must be honest, exact, safe, and simple. E-voting is vulnerable to malware, which can disrupt servers. Blockchain’s end-to-end validation solves these problems. Three smart contracts-voter, candidate, and voting-are employed. The problem of fraudulent actions is addressed using vote coins. Vote coins indicate voter status. Sidechain technology complements blockchain. Sidechains improve blockchain functionality by performing operations outside of blockchains and delivering the results to the mainchain. Thus, storing the encrypted vote on the sidechain and using the decrypted result on the mainchain reduces cost. Building access control policies to grant only authorized users’ access to the votes for counting is made simpler by this authorization paradigm. Results of the approach depict the proposed e-voting system improves system security against replay attacks and reduces the processing cost as well as processing time.
An efficient reconfigurable geographic routing congestion control algorithm for wireless sensor networks Pandith, Mamatha M.; Ramaswamy, Nataraj Kanathur; Srikantaswamy, Mallikarjunaswamy; Ramaswamy, Rekha Kanathur
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 6: December 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i6.pp6388-6398

Abstract

In recent times, huge data is transferred from source to destination through multi path in wireless sensor networks (WSNs). Due to this more congestion occurs in the communication path. Hence, original data will be lost and delay problems arise at receiver end. The above-mentioned drawbacks can be overcome by the proposed efficient reconfigurable geographic routing congestion control (RgRCC) algorithm for wireless sensor networks. the proposed algorithm efficiently finds the node’s congestion status with the help queue length’s threshold level along with its change rate. Apart from this, the proposed algorithm re-routes the communication path to avoid congestion and enhances the strength of scalability of data communication in WSNs. The proposed algorithm frequently updates the distance between the nodes and by-pass routing holes, common for geographical routing. when the nodes are at the edge of the hole, it will create congestion between the nodes in WSNs. Apart from this, more nodes sink due to congestion. it can be reduced with the help of the proposed RgRCC algorithm. As per the simulation analysis, the proposed work indicates improved performance in comparison to conventional algorithm. By effectively identifying the data congestion in WSNs with high scalability rate as compared to conventional methods