Mohasefi, Jamshid Bagherzadeh
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Anomaly detection system based on deep learning for cyber physical systems on sensory and network datasets Almendli, Muhammed; Mohasefi, Jamshid Bagherzadeh
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 6: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i6.pp6827-6837

Abstract

Cyber-physical systems (CPSs), a type of computing system integrated with physical devices, are widely used in many areas such as manufacturing, traffic control, and energy. The integration of CPS and networks has expanded the range of cyber threats. Intrusion detection systems (IDSs), use signature based and machine learning based techniques to protect networks, against threats in CPSs. Water purifying plants are among the important CPSs. In this context some research uses a dataset obtained from secure water treatment (SWaT) an operational water treatment testbed. These works usually focus solely on sensory dataset and omit the analysis of network dataset, or they focus on network information and omit sensory data. In this paper we work on both datasets. We have created IDSs using five traditional machine learning techniques, decision tree, support vector machine (SVM), random forest, naïve Bayes, and artificial neural network along with two deep methods, deep neural network, and convolutional neural network. We experimented with IDSs, on three different datasets obtained from SWaT, including network data, sensory data, and Modbus data. The accuracies of proposed methods show higher values on all datasets especially on sensory (99.9%) and Modbus data (95%) and superiority of random forest and deep learning methods compared to others.
Translation-based image steganography system utilizing autoencoder and CycleGAN Jawad, Thakwan Akram; Mohasefi, Jamshid Bagherzadeh; Reda Abdelghany, Mohammed Salah
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 5: October 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i5.pp3958-3969

Abstract

Traditional image steganography involves embedding secret information into a cover image, a process that requires modification of the carrier and potentially leaves detectable marks. This paper proposes a novel method of coverless image steganography based on generative models. Initially, a CycleGAN model is constructed and trained to learn the features of different image domains. Subsequently, an Autoencoder model is trained using two sets of images to achieve a precise one-to-one mapping. Once the models are trained, the autoencoder is used on both the sender and receiver sides to convert the cover image (also known as the stego image) into the secret image and vice versa. The CycleGAN model is then utilized to enhance the visual quality of the images generated by the autoencoder. Experimental results demonstrate that this method not only effectively secures secret information transmission but also improves efficiency and increases the capacity for information hiding compared to similar methods.