Muratkhan, Raikhan
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Predicting and detecting fires on multispectral images using machine learning methods Aitimov, Murat; Kaldarova, Mira; Kassymova, Akmaral; Makulov, Kaiyrbek; Muratkhan, Raikhan; Nurakynov, Serik; Sydyk, Nurmakhambet; Bapiyev, Ideyat
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 2: April 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i2.pp1842-1850

Abstract

In today's world, fire forecasting and early detection play a critical role in preventing disasters and minimizing damage to the environment and human settlements. The main goal of the study is the development and testing of machine learning algorithms for automated detection of the initial stages of fires based on the analysis of multispectral images. Within the framework of this study, the capabilities of three popular machine learning methods: extreme gradient boosting, logistic regression, and vanilla convolutional neural network (vanilla CNN), are considered in the task of processing and interpreting multispectral images to predict and detect fires. XGBoost, as a gradient-boosted decision tree algorithm, provides high processing speed and accuracy, logistic regression stands out for its simplicity and interpretability, while vanilla CNN uses the power of deep learning to analyze spatial and spectral data. The results of the study show that the integration of these methods into monitoring systems can significantly improve the efficiency of early fire detection, as well as help in predicting potential fires.
Deep neural networks for removing clouds and nebulae from satellite images Glazyrina, Natalya; Muratkhan, Raikhan; Eslyamov, Serik; Murzabekova, Gulden; Aziyeva, Nurgul; Rysbekkyzy, Bakhytgul; Orynbayeva, Ainur; Baktiyarova, Nazira
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 5: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i5.pp5390-5399

Abstract

This research paper delves into contemporary methodologies for eradicating clouds and nebulae from space images utilizing advanced deep learning technologies such as conditional generative adversarial networks (conditional GAN), cyclic generative adversarial networks (CycleGAN), and space-attention generative adversarial networks (space-attention GAN). Cloud cover presents a significant obstacle in remote sensing, impeding accurate data analysis across various domains including environmental monitoring and natural resource management. The proposed techniques offer novel solutions by leveraging spatial attention mechanisms to identify and subsequently eliminate clouds from images, thus uncovering previously concealed information and enhancing the quality of space data. The study emphasizes the necessity for further research aimed at refining cloud removal algorithms to accommodate diverse detection conditions and enhancing the overall efficiency of deep learning in satellite image processing. By highlighting potential benefits and advocating for ongoing exploration, the paper underscores the importance of advancing cloud removal techniques to improve data quality and unlock new applications in Earth remote sensing. In conclusion, the proposed approaches hold promise in addressing the persistent challenge of cloud cover in space imagery, paving the way for more accurate data analysis and future advancements in remote sensing technologies.