Rabie, Asmaa Hamdy
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Enhanced transformer long short-term memory framework for datastream prediction Dief, Nada Adel; Salem, Mofreh Mohamed; Rabie, Asmaa Hamdy; El-Desouky, Ali Ibrahim
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 1: February 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i1.pp830-840

Abstract

In machine learning, datastream prediction is a challenging issue, particularly when dealing with enormous amounts of continuous data. The dynamic nature of data makes it difficult for traditional models to handle and sustain real-time prediction accuracy. This research uses a multi-processor long short-term memory (MPLSTM) architecture to present a unique framework for datastream regression. By employing several central processing units (CPUs) to divide the datastream into multiple parallel chunks, the MPLSTM framework illustrates the intrinsic parallelism of long short-term memory (LSTM) networks. The MPLSTM framework ensures accurate predictions by skillfully learning and adapting to changing data distributions. Extensive experimental assessments on real-world datasets have demonstrated the clear superiority of the MPLSTM architecture over previous methods. This study uses the transformer, the most recent deep learning breakthrough technology, to demonstrate how well it can handle challenging tasks and emphasizes its critical role as a cutting-edge approach to raising the bar for machine learning.
An ensemble machine learning based model for prediction and diagnosis of diabetes mellitus Sherbiny, Moataz Mohamed El; Rabie, Asmaa Hamdy; Fattah, Mohamed Gamal Abdel; Eldin, Ali Elsherbiny Taki; Mostafa, Hossam El-Din
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 6: December 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i6.pp5347-5359

Abstract

Diabetes mellitus (DM) is a chronic metabolic disorder that poses significant health risks and global economic burdens. Early prediction and accurate diagnosis are crucial for effective management and treatment. This study presents an ensemble machine learning-based model designed to predict and diagnose Diabetes Mellitus using clinical and demographic data. The proposed approach integrates multiple machine learning algorithms, including random forest (RF), extreme gradient boosting (XGB), and logistic regression (LR), to leverage their individual strengths and enhance the entire performance. The ensemble model was trained and validated on multiple comprehensive datasets. Performance measures demonstrate the robustness of proposed model and its reliability in distinguishing diabetic cases from non-diabetic cases after applying several preprocessing steps. This work ensures the capability of machine learning in advancing healthcare by providing efficient, data-driven tools for diabetes management, aiding clinicians in early diagnosis, and contributing to personalized treatment strategies. Comparative analysis against standalone models highlights the superior predictive capabilities of the ensemble approach. Results had shown that ensemble model achieved an accuracy of 96.88% and precision of 89.85% outperforming individual classifiers.