Ranganathasharma, Roopashree Hejjaji
Unknown Affiliation

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Sustainability insights on learning-based approaches in precision agriculture in internet-of-things Panduranga, Kiran Muniswamy; Ranganathasharma, Roopashree Hejjaji
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i3.pp3495-3511

Abstract

Precision agriculture (PA) is meant to automate the complete agricultural processes with the sole target of enhanced crop yield with reduced cost of operation. However, deployment of PA in internet of things (IoT) based architecture demands solutions towards addressing various challenges where most are related to proper and precise predictive management of agricultural data. In this perspective, it is noted that learning-based approaches have made some contributory success towards addressing different variants of issues in PA; however, such methods suffer from certain loopholes, primarily related to the non-inclusion of practical constraints of IoT infrastructure in PA and lack of emphasis towards bridging the trade-off between higher accuracy and computational burden that is eventually associated with this. This paper contributes towards highlighting the strengths and weaknesses of recent learning approaches and contributes towards novel findings.
Multi-objective-trust aware improved grey wolf optimization technique for uncovering adversarial attacks in WSNs Bannikuppe Srinivasiah, Venkatesh Prasad; Ranganathasharma, Roopashree Hejjaji; Ramanna, Venkatesh
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 1: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i1.pp375-391

Abstract

Wireless sensor network (WSN) is made of several sensor nodes (SN) that monitor various applications and collect environmental data. WSNs are essential for a wide range application, including healthcare, industrial automation, and environmental monitoring. However, these networks are susceptible to several security threats, underscoring the need for robust attack detection systems. Therefore, in this study, a multi-objective-trust aware improved grey wolf optimization (M-TAIGWO) is implemented to mitigate various attacks types. This implemented M-TAIGWO method is used to select secure cluster heads (CH) and routes to obtain secure communication through the network. The implemented M-TAIGWO provides improved security against malicious attacks by increasing the energy efficiency. The important aim of M-TAIGWO is to attain secured data transmission and maximize the WSN network lifetime. The M-TAIGWO method’s performance is evaluated through energy consumption and delay. The implemented method obtains a high PDR of 98% for 500 nodes, which is superior to the quantum behavior and gaussian mutation Archimedes optimization algorithm (QGAOA), with a delay of 15 ms for 100 nodes which is lesser than fuzzy and secured clustering algorithms. In comparison to the trust-based routing protocol for WSNs utilizing an adaptive genetic algorithm (TAGA), this implemented method achieves defense hello fold, black hole, sinkhole, and selective forwarding attacks effectively.
Secure clustering and routing – based adaptive – bald eagle search for wireless sensor networks Ranganathasharma, Roopashree Hejjaji; Chandrashekaraiah, Yogeesh Ambalagere
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i4.pp3824-3832

Abstract

Wireless sensor networks (WSNs) are self-regulating networks consisting of several tiny sensor nodes for monitoring and tracking applications over extensive areas. Energy consumption and security are the two significant challenges in these networks due to their limited resources and open nature. To address these challenges and optimize energy consumption while ensuring security, this research proposes an adaptive – bald eagle search (A-BES) optimization algorithm enabled secure clustering and routing for WSNs. The A-BES algorithm selects secure cluster heads (SCHs) through several fitness functions, thereby reducing energy consumption across the nodes. Next, secure and optimal routes are chosen using A-BES to prevent malicious nodes from interfering with the communication paths and to enhance the overall network lifetime. The proposed algorithm shows significantly lower energy consumption, with values of 0.27, 0.81, 1.38, 2.27, and 3.01 J as the number of nodes increases from 100 to 300. This demonstrates a clear improvement over the existing residual energy-based data availability approach (REDAA).
A multi-tier framework of decentralized computing environment for precision agriculture (DCEPA) Panduranga, Kiran Muniswamy; Ranganathasharma, Roopashree Hejjaji
Indonesian Journal of Electrical Engineering and Computer Science Vol 39, No 2: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v39.i2.pp1072-1080

Abstract

Although collecting enormous volumes of heterogeneous data from many sensors and guaranteeing real-time decision-making are problems, precision agriculture (PA) has emerged as a promising approach to increase agricultural efficiency. The efficacy of current centralized solutions is limited in large-scale agricultural settings due to resource limitations and data saturation. In order to solve these problems, this paper suggests a decentralized computing environment for precision agriculture (DECPA), which divides resource management and data processing among several layers (end, edge, and cloud). DECPA optimizes task execution and resource allocation in the field by utilizing ensemble machine learning models (deep neural network (DNN), long short-term memory (LSTM), autoencoder (AE), and support vector machine (SVM)) and a multi-tier architecture. The findings demonstrate that DECPA combined with DNN performs better than alternative models, achieving a 20% decrease in energy usage, an 18% speedup in response time, a 5% improvement in accuracy, and a 51% reduction in latency. This illustrates the system’s capacity to manage massive amounts of data effectively while preserving peak performance. To sum up, DECPA uses decentralized resources and cutting-edge machine learning models to provide a scalable and affordable precision agriculture solution. To improve the system’s flexibility and real-time responsiveness, future research will investigate additional optimization and use in various agricultural contexts.