Safaraliev, Murodbek
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Optimal load management of autonomous power systems in conditions of water shortage Rahimov, Firdavs; Kirgizov, Alifbek; Safaraliev, Murodbek; Zicmane, Inga; Sergeev, Nikita; Matrenin, Pavel
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 1: February 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i1.pp99-109

Abstract

The issues of optimizing the operation of micro hydropower plants in conditions of water scarcity, performed by additional connection to the grid of an energy storage system and wind power turbine, as well as optimal load management, are considered. It is assumed that the load of the system is a concentrated autonomous power facility that consumes only active power. The paper presents a rigorous mathematical formulation of the problem, the solution of which corresponds to the minimum cost of an energy storage system and a wind turbine, which allows for uninterrupted supply of electricity to power facilities in conditions of water shortage necessary for the operation of micro hydropower plants (under unfavorable hydrological conditions). The problem is formulated as a nonlinear multi-objective optimization problem to apply metaheuristic stochastic algorithms. At the same time, a significant part of the problem is taken out and framed as a subproblem of linear programming which will make it possible to solve it by a deterministic simplex method that guarantees to find the exact global optimum. This approach will significantly increase the efficiency of solving the entire problem by combining metaheuristic algorithms and taking into account expert knowledge about the problem being solved.
Model of semiconductor converters for the simulation of an asymmetric loads in an autonomous power supply system Tavarov, Saidjon; Senyuk, Mihail; Safaraliev, Murodbek; Kokin, Sergey; Tavlintsev, Alexander; Svyatykh, Andrey
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 2: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i2.pp1332-1347

Abstract

This article is devoted to the development of computer model with semiconductor converters for the simulation of asymmetric loads allowing to solve the voltage symmetry problems under asymmetric loads (active and active-inductive) for isolated electric networks with renewable energy sources (mini hydroelectric power plants). A model of a symmetry device has been developed in the MATLAB/Simulink environment based on a proportional-integral controller and a relay controller - P. The effectiveness of their use depends on the load's nature. The implementation of a voltage converter is presented considering a three-phase inverter with discrete key switching at 120, 150, and 180 degrees with a purely active load. Based on the harmonic analysis of the three-phase voltage at discrete conversion, the value of the first harmonic is determined. Voltage transformations under active-inductive load at 120, 150, and 180 degrees are mathematically described. To determine the harmonic spectrum, an analysis of the fast Fourier transform for the three-phase voltage of a MATLAB/Simulink semiconductor converter was carried out. It is established that the alternating current output voltage is generated on the output side of the inverter of a three-phase voltage source through a three-phase load connected by a star with a harmonic suppression method.