Akbar, Muhammad Irham
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Support vector machine method for classifying severity of Alzheimer's based on hippocampus object using magnetic resonance imaging modalities Supriyanti, Retno; Riyanto, Arif Pujo; Ramadhani, Yogi; Aliim, Muhammad Syaiful; Akbar, Muhammad Irham; Widodo, Haris Budi; Alqaaf, Muhammad
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 6: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i6.pp6322-6331

Abstract

Alzheimer's disease is a degenerative brain condition that causes progressive decline in several aspects. Starting from memory, cognitive or thinking abilities, speaking abilities, and behavior. Currently, Alzheimer's diagnosis uses some methods, such as blood tests, scanning with computerized tomography scan (CT scan), or magnetic resonance imaging (MRI). As a reference for determining the level of severity, doctors usually use clinical dementia rating (CDR). CDR is a numerical scale used to measure the severity of dementia symptoms. The doctor will manually compare the patient's condition with those stated on the CDR. This condition will take quite a long time, and sometimes human error will occur. As technology and science develop, doctors can assist in manually detecting Alzheimer's using classification algorithms. Many methods can be used to classify, including the CDR support vector machine (SVM) method. Unfortunately, this method is usually only used to classify two classes. This technology allows the classification process to be carried out automatically and quickly. On the other hand, when using CDR to classify Alzheimer's severity, there are several scales, not just two classes. So, in this research, we modified the use of SVM to classify three levels of severity, namely scale 0 for normal, scale 1 for mild conditions, and scale 2 for moderate conditions. The experiments we carried out provided an accuracy of 90.9%.