Rajanna, Anupama
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Wide-band spectrum sensing with convolution neural network using spectral correlation function Rajanna, Anupama; Kulkarni, Srimannarayana; Narasimha Prasad, Sarappadi
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 1: February 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i1.pp409-417

Abstract

Recognition of signals is a spectrum sensing challenge requiring simultaneous detection, temporal and spectral localization, and classification. In this approach, we present the convolution neural network (CNN) architecture, a powerful portrayal of the cyclo-stationarity trademark, for remote range detection and sign acknowledgment. Spectral correlation function is used along with CNN. In two scenarios, method-1 and method-2, the suggested approach is used to categorize wireless signals without any previous knowledge. Signals are detected and classified simultaneously in method-1. In method-2, the sensing and classification procedures take place sequentially. In contrast to conventional spectrum sensing techniques, the proposed CNN technique need not bother with a factual judgment process or past information on the signs’ separating qualities. The method beats both conventional sensing methods and signal-classifying deep learning networks when used to analyze real-world, over-the-air data in cellular bands. Despite the implementation’s emphasis on cellular signals, any signal having cyclo-stationary properties may be detected and classified using the provided approach. The proposed model has achieved more than 90% of testing accuracy at 15 dB.
Sqrt-Loglogish CNN and Markov model for 5G spectrum sensing application Rajanna, Anupama; Kulkarni, Srimannarayana; Prasad, Sarappadi Narasimha
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 3: September 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i3.pp1480-1490

Abstract

The research presents innovative methods for spectrum sensing in 5G networks, using the Sqrt-Loglogish convolutional neural network (SL-CNN) and hidden orthogonal intuitionistic fuzzy Markov model (HOIFMM). The proposed methods aim to tackle issues related to detecting principal user signals accurately, mitigating interference, and efficiently utilizing the spectrum in wideband spectrum environments due to their diverse and ever changing characteristics. The Sqrt-Loglogish CNN improves spectrum sensing by addressing static threshold dependency and potential overfitting. The HOIFMM offers a complex framework for predicting sparsity levels and primary user patterns. The results highlight the effectiveness of the suggested techniques in differentiating primary user signals from noise and interference, resulting in enhanced interference management tactics and overall network performance. MATLAB simulation is performed and compared the proposed methods performance with existing state-of-the-art methods such as CNN, deep neural network (DNN), long short-term memory (LSTM) and artificial neural networks (ANN). The proposed method has outperformed existing methods in terms of sensitivity, accuracy, and precision. Future endeavors include improving these methods, investigating sophisticated machine learning algorithms, and doing real world validations to guarantee scalability and resilience in various 5G deployment situations. This research advances the spectrum sensing capabilities in 5G networks, potentially improving efficiency, reliability, and quality of service.