Claim Missing Document
Check
Articles

Found 2 Documents
Search

Empowering E-learning through blockchain: an inclusive and affordable tutoring solution Lgarch, Saadia; Hnida, Meriem; Retbi, Asmaa
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 5: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i5.pp5554-5565

Abstract

This study presents an innovative approach using the Ethereum blockchain to democratize access to tutoring services, advancing educational technology by bridging the affordability gap for learners with limited financial resources. This solution enables low-income learners to access tutoring services without significant expenses by eliminating intermediaries through smart contracts. Learners can directly book tutoring services based on fees and evaluations, ensuring a fair and accessible experience. The findings show that this approach reduces tutoring expenses and improves trust and accountability through transparent transactions and feedback mechanisms. The proposed system demonstrates how blockchain technology can foster a more equitable and efficient educational landscape, offering personalized
Integration of web scraping, fine-tuning, and data enrichment in a continuous monitoring context via large language model operations Bodor, Anas; Hnida, Meriem; Daoudi, Najima
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 1: February 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i1.pp1027-1037

Abstract

This paper presents and discusses a framework that leverages large-scale language models (LLMs) for data enrichment and continuous monitoring emphasizing its essential role in optimizing the performance of deployed models. It introduces a comprehensive large language model operations (LLMOps) methodology based on continuous monitoring and continuous improvement of the data, the primary determinant of the model, in order to optimize the prediction of a given phenomenon. To this end, first we examine the use of real-time web scraping using tools such as Kafka and Spark Streaming for data acquisition and processing. In addition, we explore the integration of LLMOps for complete lifecycle management of machine learning models. Focusing on continuous monitoring and improvement, we highlight the importance of this approach for ensuring optimal performance of deployed models based on data and machine learning (ML) model monitoring. We also illustrate this methodology through a case study based on real data from several real estate listing sites, demonstrating how MLflow can be integrated into an LLMOps pipeline to guarantee complete development traceability, proactive detection of performance degradations and effective model lifecycle management.