Claim Missing Document
Check
Articles

Found 3 Documents
Search

Optimization of CPBIS methods applied on enhanced fibrin microbeads approach for image segmentation in dynamic databases Muniappan, Ramaraj; Thangavel, Thiruvenkadam; Manivasagam, Govindaraj; Sabareeswaran, Dhendapani; Thangarasu, Nainan; Jothish, Chembath; Ilango, Bhaarathi
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i3.pp2803-2813

Abstract

In the empire of image processing and computer vision, the demand for advanced segmentation techniques has intensified with the growing complexity of visual data. This study focuses on the innovative paradigm of fuzzy mountain-based image segmentation, a method that harnesses the power of fuzzy logic and topographical inspiration to achieve nuanced and adaptable delineation of image regions. This research primarily concentrates on determining the age of tigers, a critical and challenging task in the current scenario. The primary objectives include the development of a comprehensive framework for FMBIS and an in-depth investigation into its adaptability to different image characteristics. This research work incorporates those domains of image processing and data mining to predict the age of the tiger using different kinds of color images. Fuzzy mountain-based pixel segmentation arises from the need to capture the subtle gradients and uncertainties present in images, offering a novel approach to achieving high-fidelity segmentations in diverse and complex scenarios. The proposed methods enable image enhancement and filtering and are then assessed during process time, retrieval time, to give a more accurate and reduced error rate for producing higher results for real-time tiger image database.
Chaotic crow search enhanced CRNN: a next-gen approach for IoT botnet attack detection Antony, Veena; Thangarasu, Nainan
Indonesian Journal of Electrical Engineering and Computer Science Vol 38, No 3: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v38.i3.pp1745-1754

Abstract

Internet of things (IoT) botnet attack detection is crucial for reducing and identifying hostile threats in networks. To create efficient threat detection systems, deep learning (DL) and machine learning (ML) are currently being used in many sectors, mostly in information security. The botnet attack categorization problem is difficult as data dimensionality increases. By combining convolutional and recurrent neural layers, our work effectively addressed the vanishing and expanding gradient difficulties, improving the ability to capture spatial and temporal connections. The problem of weight decaying and class imbalance affects the accuracy rate of the existing DL models. In convolutional neural network (CNN), fully connected layer optimizes the hyperparameters by utilizing its comprehension of the chaotic crow search method. The chaotic mapping maintains equilibrium between the global and local search spaces. The crow's strategy for hiding food is the main source of inspiration for optimizing the learning rate, weight, and bias components involved in the prediction process. When compared to other existing algorithms, the UNSW-NB15 dataset's results for IoT botnet attack detection in the presence of a high degree of class imbalance demonstrated the effectiveness of the proposed convolutional recurrent neural network (CRNN) boosted with chaotic crow searching algorithm, which produced the highest detection rate with the lowest false alarm rate.
Educational data mining approach for predicting student performance and behavior using deep learning techniques Ramaraj, Muniappan; Dhendapani, Sabareeswaran; Chembath, Jothish; Srividhya, Selvaraj; Thangarasu, Nainan; Ilango, Bhaarathi
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 5: October 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i5.pp4113-4122

Abstract

Educational Data Mining (EDM) uncovers insights from large datasets collected from various educational platforms, such as online learning systems, student information databases, and classroom tools. EDM helps educators identify hidden patterns that improve teaching strategies, personalize learning experiences, and predict student performance. Predicting student success has become a key focus of EDM, allowing institutions to implement targeted interventions and personalized support. The dataset included academic achievement grades from 1,001 students enrolled in various courses during the fall semester across multiple years, to demonstrate how proposed models provide more accurate predictions compared to traditional machine learning methods. Models such as YOLO, Fast R-CNN, Artificial Neural Networks (ANNs), and Long Short-Term Memory (LSTM) networks are used to capture complex, non-linear relationships within the data. The comparative analysis shows that these deep learning models significantly outperform traditional techniques, such as decision trees and support vector machines (SVMs). The results indicate that proposed method offers improved predictive accuracy, enabling educational institutions to identify at-risk students and deliver tailored interventions. This study highlights the potential of enhanced method to transform personalized education and enhance student success by better understanding individual learning needs and behaviors.