Bensoltane, Rajae
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Fine-grained hate speech detection in Arabic using transformer-based models Bensoltane, Rajae; Zaki, Taher
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i3.pp2927-2936

Abstract

With the proliferation of social media platforms, characterized by features such as anonymity, user-friendly access, and the facilitation of online community building and discourse, the matter of detecting and monitoring hate speech has emerged as an increasingly formidable challenge for society, individuals, and researchers. Despite the crucial importance of hate speech detection task, the majority of work in this field has been conducted in English, with insufficient focus on other languages, particularly Arabic. Furthermore, most existing studies on Arabic hate speech detection have addressed this task as a binary classification problem, which is unreliable. Therefore, the aim of this study is to provide an enhanced model for detecting fine-grained hate speech in Arabic. To this end, three transformer-based models were evaluated to generate contextualized word embeddings from input sequence. Additionally, these models were combined with a bidirectional gated recurrent unit (BiGRU) layer to further improve the extracted semantic and context features. The experiments were conducted on an Arabic reference dataset provided by the open-source Arabic corpora and processing tools (OSACT-5) shared task. A comparative analysis indicates the efficiency of the proposed model over the baseline and related work models by achieving a macro F1-score of 61.68%.
Enhancing Arabic offensive language detection with BERT-BiGRU model Bensoltane, Rajae; Zaki, Taher
Bulletin of Electrical Engineering and Informatics Vol 13, No 2: April 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i2.6530

Abstract

With the advent of Web 2.0, various platforms and tools have been developed to allow internet users to express their opinions and thoughts on diverse topics and occurrences. Nevertheless, certain users misuse these platforms by sharing hateful and offensive speeches, which has a negative impact on the mental health of internet society. Thus, the detection of offensive language has become an active area of research in the field of natural language processing. Rapidly detecting offensive language on the internet and preventing it from spreading is of great practical significance in reducing cyberbullying and self-harm behaviors. Despite the crucial importance of this task, limited work has been done in this field for nonEnglish languages such as Arabic. Therefore, in this paper, we aim to improve the results of Arabic offensive language detection without the need for laborious preprocessing or feature engineering work. To achieve this, we combine the bidirectional encoder representations from transformers (BERT) model model with a bidirectional gated recurrent unit (BiGRU) layer to further enhance the extracted context and semantic features. The experiments were conducted on the Arabic dataset provided by the SemEval 2020 Task 12. The evaluation results show the effectiveness of our model compared to the baseline and related work models by achieving a macro F1- score of 93.16%.