Suwansantisuk, Watcharapan
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Robust individual pig tracking Jaoukaew, Aggaluck; Suwansantisuk, Watcharapan; Kumhom, Pinit
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 1: February 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i1.pp279-293

Abstract

The locations of pigs in the group housing enable activity monitoring and improve animal welfare. Vision-based methods for tracking individual pigs are noninvasive but have low tracking accuracy owing to long-term pig occlusion. In this study, we developed a vision-based method that accurately tracked individual pigs in group housing. We prepared and labeled datasets taken from an actual pig farm, trained a faster region-based convolutional neural network to recognize pigs’ bodies and heads, and tracked individual pigs across video frames. To quantify the tracking performance, we compared the proposed method with the global optimization (GO) method with the cost function and the simple online and real-time tracking (SORT) method on four additional test datasets that we prepared, labeled, and made publicly available. The predictive model detects pigs’ bodies accurately, with F1-scores of 0.75 to 1.00, on the four test datasets. The proposed method achieves the largest multi-object tracking accuracy (MOTA) values at 0.75, 0.98, and 1.00 for three test datasets. In the remaining dataset, the proposed method has the second-highest MOTA of 0.73. The proposed tracking method is robust to long-term occlusion, outperforms the competitive baselines in most datasets, and has practical utility in helping to track individual pigs accurately.
Remote field-programmable gate array laboratory for signal acquisition and design verification Sum, Rithea; Suwansantisuk, Watcharapan; Kumhom, Pinit
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 2: April 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i2.pp2344-2360

Abstract

A remote laboratory utilizing field-programmable gate array (FPGA) technologies enhances students’ learning experience anywhere and anytime in embedded system design. Existing remote laboratories prioritize hardware access and visual feedback for observing board behavior after programming, neglecting comprehensive debugging tools to resolve errors that require internal signal acquisition. This paper proposes a novel remote embedded-system design approach targeting FPGA technologies that are fully interactive via a web-based platform. Our solution provides FPGA board access and debugging capabilities beyond the visual feedback provided by existing remote laboratories. We implemented a lab module that allows users to seamlessly incorporate into their FPGA design. The module minimizes hardware resource utilization while enabling the acquisition of a large number of data samples from the signal during the experiments by adaptively compressing the signal prior to data transmission. The results demonstrate an average compression ratio of 2.90 across three benchmark signals, indicating efficient signal acquisition and effective debugging and analysis. This method allows users to acquire more data samples than conventional methods. The proposed lab allows students to remotely test and debug their designs, bridging the gap between theory and practice in embedded system design.