Claim Missing Document
Check
Articles

Found 2 Documents
Search

Hybrid filtering methods for feature selection in high-dimensional cancer data Md Noh, Siti Sarah; Ibrahim, Nurain; Mansor, Mahayaudin M.; Yusoff, Marina
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 6: December 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i6.pp6862-6871

Abstract

Statisticians in both academia and industry have encountered problems with high-dimensional data. The rapid feature increase has caused the feature count to outstrip the instance count. There are several established methods when selecting features from massive amounts of breast cancer data. Even so, overfitting continues to be a problem. The challenge of choosing important features with minimum loss in a different sample size is another area with room for development. As a result, the feature selection technique is crucial for dealing with high-dimensional data classification issues. This paper proposed a new architecture for high-dimensional breast cancer data using filtering techniques and a logistic regression model. Essential features are filtered out using a combination of hybrid chi–square and hybrid information gain (hybrid IG) with logistic regression as classifier. The results showed that hybrid IG performed the best for high-dimensional breast and prostate cancer data. The top 50 and 22 features outperformed the other configurations, with the highest classification accuracies of 86.96% and 82.61%, respectively, after integrating the hybrid information gain and logistic function (hybrid IG+LR) with a sample size of 75. In the future, multiclass classification of multidimensional medical data to be evaluated using data from a different domain.
Hybrid embedded and filter feature selection methods in big-dimension mammary cancer and prostatic cancer data Md Noh, Siti Sarah; Ibrahim, Nurain; M. Mansor, Mahayaudin; Md Ghani, Nor Azura; Yusoff, Marina
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 13, No 3: September 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v13.i3.pp3101-3110

Abstract

The feature selection method enhances machine learning performance by enhancing learning precision. Determining the optimal feature selection method for a given machine learning task involving big-dimension data is crucial. Therefore, the purpose of this study is to make a comparison of feature selection methods highlighting several filters (information gain, chi-square, ReliefF) and embedded (Lasso, Ridge) hybrid with logistic regression (LR). A sample size of n=100, 75 is chosen randomly, and the reduction features d=50, 22, and 10 are applied. The procedure for feature reduction makes use of the entire sample sizes. Each sample size's results are compared, including tests with no feature selection process. The results indicate that LR+ReliefF is the best method for mammary cancer data, whereas LR+IG is the best for prostatic cancer data, making the filter more suitable than embedded for big-dimension data. This study revealed that the sample's features and size influence the most effective method for selecting features from big-dimension data. Therefore, it provides insight into the most effective methods for particular features and sample sizes in high-dimensional data.