Paucar, Inoc Rubio
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

A study of Tobacco use and mortality by data mining Arenas, Laberiano Andrade; Paucar, Inoc Rubio; Yactayo-Arias, Cesar
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 6: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i6.pp6861-6873

Abstract

The use of data mining to address the issue of people who consume tobacco and other harmful substances for their health has led to a significant dependence among smokers, which over time causes illnesses that may result in the addict's death. As a result, the research's goal is to apply a data mining study whose findings showed that the confidence intervals are less than 0.355. However, the lift and conviction in the last three rules are also lower, making it unlikely that these rules will be followed. On the other hand, the knowledge discovery in data bases method was used. It consists of the following stages: data selection, preparation, data mining, and evaluation and interpretation of the results. To that end, comparisons of agile data mining methodologies like crisp-dm, knowledge discovery in data, and Semma are also done. As a result, using specific criteria, dimensions are segmented to allow for the differentiation of these methodologies. As a result, a comparison graph of models such as naive Bayes, decision trees, and rule induction is used. To sum up, it can be said that the rules of association apply to men, the number of admissions, and the cancers that can be brought on by smoking. Also, the percentage of male patients admitted with cancers that can be brought on by smoking Last but not least, the number of admissions and cancers that can be brought on by smoking
Data mining and cardiac health: predicting heart attack risks Paucar, Inoc Rubio; Andrade-Arenas, Laberiano
Indonesian Journal of Electrical Engineering and Computer Science Vol 38, No 2: May 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v38.i2.pp1010-1023

Abstract

In a context where heart attacks continue to be a global health concern, the lack of precision in predicting who is at higher risk poses a critical challenge due to the variability of risk factors and complex interactions among them. The research aims to develop predictive models for heart attack risks using data mining techniques, employing the knowledge discovery in databases methodology (KDD) and the k-means algorithm with RapidMiner studio. The primary objective is to identify patterns and risk profiles, allowing for early identification of at-risk individuals, considering factors like obesity, diabetes, alcoholism, and stress, to reduce preventable deaths and improve cardiac healthcare. This innovative approach combines cardiac health, data mining, and KDD methodology to address the challenge of predicting heart attack risks and has the potential to enhance medical care and save lives. The predominant results obtained were that cluster 1 with a fraction of 0.312 and a percentage of 31.2% of the attribute diabetes was one of the most prevalent causes of cardiac risk. Finally, the research concluded that people with diabetes are more likely to have cardiac risk associated with dietary factors or consumption of other substances.