Alauthman, Mohammad
Unknown Affiliation

Published : 5 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Indonesian Journal of Electrical Engineering and Computer Science

A general framework for metaverse based on parallel computing and HPC Al Khaldy, Mohammad Ali; Al-Qerem, Ahmad; Aldweesh, Amjad; Alauthman, Mohammad
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 3: September 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i3.pp1895-1905

Abstract

As virtual and actual universes merge inside the creating metaverse, requests have pointedly ascended for continuous, intuitive, and intense encounters. The ability of the metaverse to effectively analyze and render complicated links and information supplied by clients is critical for realizing that goal. These demanding computational demands are starting to be supported by parallel processing, and high-performance computing (HPC) is beyond uncertainty key to this domain. The integrative framework presented in this paper addresses the core challenges of inertness, flexibility, and ease of use while integrating equal registration into the metaverse. The system enables prompt handling of client actions and quick response times by distributing calculations over multiple processors, which is essential for the seamless client experience. It also manages the vast amount of metaverse material and interactions as well as the various data processing needs. The paper looks at intrinsic equal processing difficulties in this unique climate, including creating versatile and energy-effective equal calculations that consider load adjusting and asset designation. It features the need to democratize equal figuring assets to produce metaverse extension while accentuating the significance of information protection and security conventions in multi-client settings. The cooperative energy between metaverse development and equal registering progressions vows to push limits, empowering remarkable degrees of virtual submersion and collaboration.
Forecasting research influence: a recurrent neural network approach to citation prediction Jamal, Naser; Alauthman, Mohammad; Malhis, Muhannad; Ishtaiwi, Abdelraouf M.
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 2: November 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i2.pp1070-1082

Abstract

As the volume of scientific publications continues to proliferate, effective evaluation tools to determine the impact and quality of research articles are increasingly necessary. Citations serve as a widely utilized metric for gauging scientific impact. However, accurately prognosticating the long-term citation impact of nascent published research presents a formidable challenge due to the intricacy and unpredictability innate to the scientific ecosystem. Sophisticated machine learning methodologies, particularly recurrent neural networks (RNNs), have recently demonstrated promising potential in addressing this task. This research proposes an RNN architecture leveraging encoder-decoder sequence modeling capabilities to ingest historical chronicles and predict succeeding evolution via latent temporal dynamics learning. Comparative analysis between the RNN approach and baselines, including random forest, support vector regression, and multi-layer perceptron, demonstrate superior performance on unseen test data and rigorous k-fold cross-validation. On a corpus from Petra University, the RNN methodology attained the lowest errors (root mean squared error (RMSE) 1.84) and highest accuracy (0.91), area under the curve (AUC) (0.96), and F1-score (0.92). Statistical tests further verify significant improvements. The findings validate our deep learning solution's efficacy, robustness, and real-world viability for long-term scientific impact quantification to aid stakeholders in research evaluation. The findings intimate that RNN-based predictive modeling constitutes a potent technology for citation-driven scientific impact quantification.