Rubio-Paucar, Inoc
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Predictive models in Alzheimer's disease: an evaluation based on data mining techniques Andrade-Arenas, Laberiano; Rubio-Paucar, Inoc; Yactayo-Arias, Cesar
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i3.pp2988-3002

Abstract

The increasing prevalence of Alzheimer's disease in older adults has raised significant concern in recent years. Aware of this challenge, this research set out to develop predictive models that allow early identification of people at risk for Alzheimer's disease, considering several variables associated with the disease. To achieve this objective, data mining techniques were employed, specifically the decision tree algorithm, using the RapidMiner Studio tool. The sample explore modify model and assess (SEMMA) methodology was implemented systematically at each stage of model development, ensuring an orderly and structured approach. The results obtained revealed that 45.00% of people with dementia present characteristics that identify them as candidates for confirmation of a diagnosis of Alzheimer's disease. In contrast, 52.78% of those who do not have dementia show no danger of contracting the disease. In the conclusion of the research, it was noted that most patients diagnosed with Alzheimer's are older than 65 years, indicating that this stage of life tends to trigger brain changes associated with the disease. This finding underscores the importance of considering age as a key factor in the early identification of the disease.
Data mining for predictive analysis in gynecology: a focus on cervical health Andrade-Arenas, Laberiano; Rubio-Paucar, Inoc; Yactayo-Arias, Cesar
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i3.pp2822-2833

Abstract

Currently, data mining based on the application of detection of important patterns that allow making decisions according to cervical cancer is a problem that affects women from the age of 24 years and older. For this purpose, the Rapid Miner Studio tool was used for data analysis according to age. To perform this analysis, the knowledge discovery in databases (KDD) methodology was used according to the stages that this methodology follows, such as data selection, data preparation, data mining and evaluation and interpretation. On the other hand, the comparison of methodologies such as the standard intersectoral process for data mining (Crips-dm), KDD and sample, explore, modify, model, evaluate (Semma) is shown, which is separated by dimensions and in each dimension both methodologies are compared. In that sense, a graph was created comparing algorithmic models such as naive Bayes, decision tree, and rule induction. It is concluded that the most outstanding result was -1.424 located in cluster 4 in the attribute result date.
Expert systems in mental health: innovative approach for personalized treatment Andrade-Arenas, Laberiano; Rubio-Paucar, Inoc; Celis, Domingo Hernández; Yactayo-Arias, Cesar
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 1: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i1.pp414-427

Abstract

Custom classification of mental illnesses has emerged as a challenge for mental health specialists, often minimized by patients' lack of awareness of symptoms and the importance of early intervention. Therefore, the purpose of this research is to provide a comprehensive understanding of personalized treatment, encompassing both pharmacological and non-pharmacological options, specifically tailored to mental disorders, considering factors such as the patient's age and gender, among other relevant characteristics. In this context, the Buchanan methodology has been chosen as the framework for structuring a web-based expert system. This approach covers everything from problem identification to system implementation and subsequent evaluation. The survey results, with a total of 50 responses, reveal that the category "Good" leads with 70%, closely followed by "Fair" and "Poor," both at 14%. 71.4% of responses reflect a positive evaluation, with 85.7% combining "Good" or "Fair" responses, and all categories reaching 100%. These results support the feasibility and effectiveness of implementing a web-based expert system under the Buchanan methodology. A positive response in the survey suggests that this methodology can significantly contribute to personalizing and recommending appropriate treatments, both pharmacological and non-pharmacological, thereby benefiting a broad spectrum of patients with mental disorders.