Claim Missing Document
Check
Articles

Found 2 Documents
Search

A new framework to enhance healthcare monitoring using patient-centric predictive analysis Madderi Sivalingam, Saravanan; Thisin, Syed
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i3.pp3295-3302

Abstract

In the contemporary healthcare landscape, various intelligent automated approaches are revolutionizing healthcare tasks. Learning concepts are pivotal for activities like comprehending acquired data and monitoring patient behavior. Among patient-centric concerns, addressing data heterogeneity, extraction, and prediction challenges is crucial. To enhance patient monitoring using care indicators like cost and length of stay at healthcare centers, many researchers found a model for automated tools, but do not have the artificial intelligence (AI) based models as of now. Therefore, this research study will propose an AI and internet of things (IoT) integrated automated approach with smart sensors called the “PatientE” framework with heterogeneity and patient data. Employing certain rules for data extraction to form a distinct representation, our model integrates pre-treatment information and employs a modified combined random forest, long-short term memory (LSTM), and bidirectional long-short term memory (BiLSTM) algorithm for predictive post-treatment monitoring. This framework, synergizing AI, IoT, and advanced neural networks, facilitates real-time health monitoring, especially focusing on breast cancer patients. Embracing pre-treatment, in-treatment, and post-treatment phases, our model aims for accurate diagnosis, improved cost-efficiency, and extended stays. The evaluation underscores scalability, reliability enhancement, and validates the framework's efficacy in transforming healthcare practices.
A new intensity-modulated radiation therapy with deep learning heart rate prediction framework for smart health monitoring Sivalingam, Saravanan Madderi; Thisin, Syed
Indonesian Journal of Electrical Engineering and Computer Science Vol 37, No 1: January 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v37.i1.pp300-314

Abstract

This research paper monitors the patient’s health using sensor data, cloud, and big data Hadoop tools and used to predict heart attack and related results were discussed in detail. The integration of big data, and wearable sensors in pervasive computing has significantly enhanced healthcare services. This proposal focuses on developing an advanced healthcare monitoring system tailored for tracking the activities of elderly individuals. The wearable sensors are placed on humans at a right angle, left arm, right arm, and chest to collect the data. The large data are split into smaller segments using the map and reduce process of big data Hadoop tools. The intensity-modulated radiation therapy (IMRT) approach is used for the mapping phase and deep convolutional neural network (DCNN), deep belief network (DBN), and long short-term memory (LSTM) and proposed deep learning heart rate prediction (DLHRP) algorithms are used for the combiner/reduce phase. The reduction process combines similar segments of data to predict identical classes to predict the severity of human conditions. The proposed IMRT-DLHRP system has improved performance of 96.34% accuracy compared with 84.25%, 89.47%, and 91.58% compared to DCNN, DBN, and LSTM respectively, therefore proposed framework has significant improvement over existing approaches.