Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Optimizing credit card fraud detection: a deep learning approach to imbalanced datasets Ndama, Oussama; Bensassi, Ismail; En-Naimi, El Mokhtar
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 4: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i4.pp4802-4814

Abstract

Imbalanced datasets pose a significant challenge in credit card fraud detection, hindering the training effectiveness of models due to the scarcity of fraudulent cases. This study addresses the critical problem of data imbalance through an in-depth exploration of techniques, including cross-entropy loss minimization, weighted optimization, and synthetic minority oversampling technique-based resampling, coupled with deep neural networks (DNNs). The urgent need to combat class imbalances in credit card fraud datasets is underscored, emphasizing the creation of reliable detection models. The research method delves into the application of DNNs, strategically optimizing and resampling the dataset to enhance model performance. The study employs a dataset from October 2018, containing 284,807 transactions, with a mere 492 classified as fraudulent. Various resampling techniques, such as undersampling and SMOTE oversampling, are evaluated alongside weighted optimization. The results showcase the effectiveness of SMOTE oversampling, achieving an accuracy of 99.83% without any false negatives. The study concludes by advocating for flexible strategies, integrating cutting-edge machine learning methods, and developing adaptive defenses to safeguard against emerging financial risks in credit card fraud detection.
Enhancing multi-class text classification in biomedical literature by integrating sequential and contextual learning with BERT and LSTM Ndama, Oussama; Bensassi, Ismail; Ndama, Safae; En-Naimi, El Mokhtar
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i4.pp4202-4212

Abstract

Classification of sentences in biomedical abstracts into predefined categories is essential for enhancing readability and facilitating information retrieval in scientific literature. We propose a novel hybrid model that integrates bidirectional encoder representations from transformers (BERT) for contextual learning, long short-term memory (LSTM) for sequential processing, and sentence order information to classify sentences from biomedical abstracts. Utilizing the PubMed 200k randomized controlled trial (RCT) dataset, our model achieved an overall accuracy of 88.42%, demonstrating strong performance in identifying methods and results sections while maintaining balanced precision, recall, and F1-scores across all categories. This hybrid approach effectively captures both contextual and sequential patterns of biomedical text, offering a robust solution for improving the segmentation of scientific abstracts. The model's design promotes stability and generalization, making it an effective tool for automatic text classification and information retrieval in biomedical research. These results underscore the model's efficacy in handling overlapping categories and its significant contribution to advancing biomedical text analysis.