Claim Missing Document
Check
Articles

Found 1 Documents
Search

Ataxic person prediction using feature optimized based on machine learning model Seetharama, Pavithra Durganivas; Math, Shrishail
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 2: April 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i2.pp2100-2109

Abstract

Ataxic gait monitoring and assessment of neurological disorders belong to important areas that are supported by digital signal processing methods and artificial intelligence (AI) techniques such as machine learning (ML) and deep learning (DL) techniques. This paper uses spatio-temporal data from Kinect sensor to optimize machine learning model to distinguish between ataxic and normal gait. Existing ML-based methodologies fails to establish feature correlation between different gait parameters; thus, exhibit very poor performance. Further, when data is imbalanced in nature the existing ML-based methodologies induces higher false positive. In addressing the research issues this paper introduces an extreme gradient boost (XGBoost)-based classifier and enhanced feature optimization (EFO) by modifying the standard cross validation (SCV) mechanism. Experiment outcome shows the proposed ataxic person identification model achieves very good result in comparison with existing ML-based and DL-based ataxic person identification methodologies.