Prashant, Jyothi Arcot
Unknown Affiliation

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

A simplified predictive framework for cost evaluation to fault assessment using machine learning Rai, Deepti; Prashant, Jyothi Arcot
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 6: December 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i6.pp7027-7036

Abstract

Software engineering is an integral part of any software development scheme which frequently encounters bugs, errors, and faults. Predictive evaluation of software fault contributes towards mitigating this challenge to a large extent; however, there is no benchmarked framework being reported in this case yet. Therefore, this paper introduces a computational framework of the cost evaluation method to facilitate a better form of predictive assessment of software faults. Based on lines of code, the proposed scheme deploys adopts a machine-learning approach to address the perform predictive analysis of faults. The proposed scheme presents an analytical framework of the correlation-based cost model integrated with multiple standards machine learning (ML) models, e.g., linear regression, support vector regression, and artificial neural networks (ANN). These learning models are executed and trained to predict software faults with higher accuracy. The study considers assessing the outcomes based on error-based performance metrics in detail to determine how well each learning model performs and how accurate it is at learning. It also looked at the factors contributing to the training loss of neural networks. The validation result demonstrates that, compared to logistic regression and support vector regression, neural network achieves a significantly lower error score for software fault prediction.